(x-6)⋮(x+1)
Cứu tui.Đề ôn thi đó
sos
Cứuv mình câu này trước thứ 3nha.Thankyou
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
`#3107.\text {DN}`
\(3^{x+2}+4\cdot3^{x+1}+3^{x-1}=6^6\)
`=> 3^x*3^2 + 4*3^x*3 + 3^x * 1/3 = 6^6`
`=>3^x*(3^2 + 12 + 1/3) = 6^6`
`=> 3^x * 64/3 = 6^6`
`=> 3^x = 6^6 \div 64/3`
`=> 3^x = 2187`
`=> 3^x = 3^7`
`=> x = 7`
Vậy, `x = 7.`
\(\left(x-1\right)\left(x+1\right)-3x-6=6\)
\(x^2-1^2-3x-6-6=0\)
\(x^2-1-3x-12=0\)
\(x^2-3x-13=0\)
\(\orbr{\begin{cases}x=\frac{3-\sqrt{61}}{2}\\x=\frac{3+\sqrt{61}}{2}\end{cases}}\)
\(\left(x-1\right)\left(x+1\right)-3x-6=6\)
\(\left(x-1\right)\left(x+1\right)-3x=12\)
\(\left(x-1\right)x-\left(x-1\right)1-\left(1+2\right)x=12\)
\(\left(x-1-1+2\right)x-x-1=12\)
\(\left(x-1-1+2-1\right)x=11\)
\(\left(x-1\right)x=11\)
\(x^2-x=11\)
Đk : x > 4
\(x=4\Rightarrow16-4=11\left(\varnothing\right)\)
\(x\in\varnothing\)
tìm x hả bn
ừ