Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(5^{x+3}\left(5-3\right)=2.5^{11}\)
\(5^{x+3}.2=2.5^{11}\)
\(5^{x+3}=5^{11}\)
\(x+3=11\)
\(x=8\)
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
\(4^{x+1}\left(4^2-3\right)=13.4^{11}\)
\(4^{x+1}.13=13.4^{11}\)
\(4^{x+1}=4^{11}\)
\(x+1=11\)
\(x=10\)
\(3^{x+2}+4.3^{x+1}+3^{x-1}=6^6\)
\(3^{x-1}.3^3+4.3^{x-1}.3^2+3^{x-1}=6^6\)
\(3^{x-1}.\left(27+9.4+1\right)=6^6\)
\(3^{x-1}.\left(27+36+1\right)=2^6.3^6\)
\(3^{x-1}.64=3^{x-1}.2^6=3^6.2^6\)
\(\Rightarrow\)\(3^6=3^{x-1}\Rightarrow x=7\)
3^x.3^2+4.3^x.3+3^x:3=6^6
3^x.9+4.3^x.3+3^x/3=36
nhóm lại mà làm nhé.
k nha
a, \(\left(\frac{1}{2}-\frac{1}{3}\right)\cdot6^x+6^{x+2}=6^{10}+6^7\)
\(\Leftrightarrow\frac{1}{6}\cdot6^x+6^x\cdot6^2=6^{10}+6^7\)
\(\Leftrightarrow6^{x-1}\left(1+6^3\right)=6^7\left(6^3+1\right)\)
\(\Leftrightarrow6^{x-1}=6^7\Leftrightarrow x-1=7\)
\(\Leftrightarrow x=8\)
b, \(\left(\frac{1}{2}-\frac{1}{6}\right)\cdot3^{x+4}-4\cdot3^x=3^{16}-4\cdot3^{13}\)
\(\Leftrightarrow\frac{1}{3}\cdot3^{x+4}-4\cdot3^x=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x\cdot3^3-4\cdot3^x=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x\left(3^3-4\right)=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x=3^{13}\Leftrightarrow x=13\)
a. x=8
b. x=13
còn cách tính thì mình quên rồi vì minh học cái này lâu lắm rồi ko nhớ đc.
a, => 2^x = (2^3)^4/(2^4)^3 = 2^12/2^12 = 1 = 2^0
=> x = 0
c, => 4^x = 4^10.(4-3) = 4^10
=> x=10
d, => 2^2.3^x-1 + 2.3^x.9 = 2^2.3^6+2.3^9
=> 2.3^x-1 . (2+3.9) = 2.3^6.(2+3^3)
=> 2.3^x-1 . 27 = 2.3^6 . 27
=> 3^x-1 = 3^6
=> x-1 = 6
=> x = 7
e, => 2^x.(1/3+1/6+2) = 2^11.(2+1/2)
=> 2^x. 5/2 = 2^11. 5/2
=> 2^x = 2^11
=> x = 11
Tk mk nha
1;Ta có\(5.3^x=5.3^4\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
2.Ta có \(9.5^x=6.5^6+3.5^6\)
\(\Rightarrow9.5^x=5^6.\left(6+3\right)\)
\(\Rightarrow9.5^x=9.5^6\)
\(\Rightarrow5^x=5^6\)\
\(\Rightarrow x=6\)
3, Ta có \(2.3^{x+2}+4.3^{x+1}=10.3^6\)
\(\Rightarrow3^{x+1}.\left(2.3+4\right)=10.3^6\)
\(\Rightarrow3^{x+1}.10=10.3^6\)
\(\Rightarrow3^{x+1}=3^6\)
\(\Rightarrow x+1=6\)
\(\Rightarrow x=5\)
a) 5.3x = 5.34
=> 3x=34
=> x=4
b) 9.5x=6.56+3.56
=> 9.5x = (6+3)56
=> 9.5x=9.56
=> 5x=56
=> x=6
c) 2.3x+2 + 4.3x+1 = 10.36
=> 2.3x+1.3 + 4.3x+1 = 10.36
=> 6.3x+1+4.3x+1=10.36
=> (6+4).3x+1=10.36
=> 10.3x+1=10.36
=> 3x+1=36
=> x+1=6
=> x=5
a, Ta có \(2.3^{x+2}+4.3^{x+1}=3^6.10\)
\(\Rightarrow2.3.3^{x+1}+4.3^{x+1}=3^6.10\)
\(\Rightarrow3^{x+1}.\left(6+4\right)=3^6.10\)
\(\Rightarrow3^{x+1}.10=3^6.10\)
\(\Rightarrow3^{x+1}=3^6\)
\(\Rightarrow x+1=6\)
\(\Rightarrow x=5\)
b,\(\left(\frac{1}{3}+\frac{1}{6}\right).2^{x+4}-2^x=2^{13}-2^{16}\)
\(\Rightarrow\frac{1}{2}.2^{x+4}-2^x=2^{13}.\left(1-2^3\right)\)
\(\Rightarrow2^{x+3}-2^x=2^{13}.\left(1-2^3\right)\)
\(\Rightarrow2^x.\left(2^3-1\right)=2^{13}.\left(1-2^3\right)\)
\(\Rightarrow2^x.\left(2^3-1\right)=-2^{13}.\left(2^3-1\right)\)
\(\Rightarrow2^x=2^{-13}\)
\(\Rightarrow x=-13\)
A ) 2 . 3x+2 + 4 . 33+1 = 36 . 10
2 . 3x . 9 + 4 . 3x . 3 = 729 .10
18 . 3x + 12 . 3x = 243 . 3 . 10
30 . 3x = 243 . 30
3x = 243
x = 5
a)\(\left(-3\right)^{x+3}=-\frac{1}{27}\)
\(\left(-3\right)^{x+3}=\left(-\frac{1}{3}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-\frac{3^0}{3^1}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-3^{-1}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-3\right)^{-3}\)
\(\Rightarrow x+3=-3\)
\(\Rightarrow x=-6\)
b)\(\left(-6\right)^{2x+2}=\frac{1}{36}\)
\(\left(-6\right)^{2x+2}=\left(-\frac{1}{6}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-\frac{6^0}{6^1}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-6^{-1}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-6\right)^{-2}\)
\(\Rightarrow2x+2=-2\)
\(\Rightarrow2x=-4\)
\(\Rightarrow x=-2\)
c)\(\left(-3\right)^{x+5}=\frac{1}{81}\)
\(\left(-3\right)^{x+5}=\left(-\frac{1}{3}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-\frac{3^0}{3^1}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-3^{-1}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-3\right)^{-4}\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
d)\(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^6\)
\(\left[\left(\frac{1}{3}\right)^2\right]^x=\left[\left(\frac{1}{3}\right)^3\right]^6\)
\(\left(\frac{1}{3}\right)^{2x}=\left(\frac{1}{3}\right)^{18}\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
e)\(\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)
\(\left[\left(\frac{2}{3}\right)^2\right]^x=\left[\left(\frac{2}{3}\right)^3\right]^6\)
\(\left(\frac{2}{3}\right)^{2x}=\left(\frac{2}{3}\right)^{18}\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
a) \(\left|x+\frac{1}{5}\right|-4=-2\)
=) \(\left|x+\frac{1}{5}\right|=-2+4=2\)
=) \(x+\frac{1}{5}=2\)hoặc \(x+\frac{1}{5}=-2\)
=) \(x=2-\frac{1}{5}=\frac{9}{5}\); =) \(x=\left(-2\right)-\frac{1}{5}=\frac{-11}{5}\)
Vậy \(x=\left\{\frac{9}{5},\frac{-11}{5}\right\}\)
b)\(2x-\frac{1}{5}=\frac{6}{5}x-\frac{1}{2}\)
=) \(2x-\frac{6}{5}x=\frac{-1}{2}+\frac{1}{5}\)
=) \(x.\left(2-\frac{6}{5}\right)=\frac{-3}{10}\)
=) \(x.\frac{4}{5}=\frac{-3}{10}\)
=) \(x=\frac{-3}{10}:\frac{4}{5}\)
=) \(x=\frac{-3}{8}\)
c) \(\left(x-3\right)^{x+2}-\left(x-3\right)^{x+8}=0\)
=) \(\left(x-3\right)^{x+2}.\left(1-6\right)=0\)
=) \(\left(x-3\right)^{x+2}=0:\left(1-6\right)=0\)
Mà chỉ có \(0^x=0\)
=) \(x-3=0\)
=) \(x=0+3\)
=) \(x=3\)
a,
\(\left|x+\frac{1}{5}\right|-4=-2\)
\(\Rightarrow\left|x+\frac{1}{5}\right|=2\)
\(\Rightarrow\hept{\begin{cases}x+\frac{1}{5}=2\\x+\frac{1}{5}=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{9}{5}\\x=-\frac{11}{5}\end{cases}}\)
b,
\(2x-\frac{1}{5}=\frac{6}{5}x-\frac{1}{2}\)
\(\Rightarrow2x-\frac{6}{5}x=-\frac{1}{2}+\frac{1}{5}\)
\(\Rightarrow\frac{4}{5}x=-\frac{3}{10}\Leftrightarrow x=-\frac{3}{8}\)
c,
\(\left[x-3\right]^{x+2}-\left[x-3\right]^{x+8}=0\)
=> [x-3]x + 2 = [x-3]x+8
=> x + 2 = x + 8
=> x không tồn tại
1: \(5\cdot3^x=5\cdot3^4\)
nên \(3^x=3^4\)
hay x=4
2: \(7\cdot4^x=7\cdot4^3\)
nên \(4^x=4^3\)
hay x=3
3: \(8\cdot7^x=8\cdot7^6\)
nên \(7^x=7^6\)
hay x=6
`#3107.\text {DN}`
\(3^{x+2}+4\cdot3^{x+1}+3^{x-1}=6^6\)
`=> 3^x*3^2 + 4*3^x*3 + 3^x * 1/3 = 6^6`
`=>3^x*(3^2 + 12 + 1/3) = 6^6`
`=> 3^x * 64/3 = 6^6`
`=> 3^x = 6^6 \div 64/3`
`=> 3^x = 2187`
`=> 3^x = 3^7`
`=> x = 7`
Vậy, `x = 7.`