tìm x và y
x/y=y/10=10/x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2x+10=3\left(x+3\right)\)
\(\Leftrightarrow2x+10=3x+9\)
\(\Leftrightarrow2x-3x=9-10\)
\(\Leftrightarrow-x=-1\)
\(\Leftrightarrow x=1\)
Vây: Tập nghiệm của phương trình là: \(S=\left\{1\right\}\)
_Chúc bạn học tốt_
2x + 10 = 3( x + 3)
\(\Leftrightarrow\) 2x + 10 = 3x + 9
\(\Leftrightarrow\) 2x - 3x = 9 - 10
\(\Leftrightarrow\) -x = -1
\(\Leftrightarrow\) x = 1
Vậy phương trình đã cho có nghiệm là x = 1
\(x^2-2\left(m+1\right)x+2m+10=10\)
\(\Leftrightarrow x^2-\left(2m+2\right)x+2m=0\)
\(\text{Δ}=\left(2m+2\right)^2-4\cdot2m=4m^2+8m+4-8m=4m^2+4>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\)
- Với \(m^2-9< 0\Leftrightarrow-3< m< 3\) pt vô nghiệm
- Với \(m^2-9=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-3\end{matrix}\right.\) pt có nghiệm kép tương ứng \(\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
- Với \(m^2-9>0\Rightarrow\left[{}\begin{matrix}m>3\\m< -3\end{matrix}\right.\) pt có 2 nghiệm pb:
\(\left\{{}\begin{matrix}x_1=m+1-\sqrt{m^2-9}\\x_2=m+1+\sqrt{m^2-9}\end{matrix}\right.\)
Ta có: \(x=-2y\)
\(\Leftrightarrow\frac{x}{-2}=\frac{y}{1}\)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\frac{x}{-2}=\frac{y}{1}=\frac{x+y}{-2+1}=\frac{10}{-1}=-10\)
\(\Rightarrow\hept{\begin{cases}x=20\\y=-10\end{cases}}\)
xét vế trái
\(\sqrt{x-2}\)\(+\sqrt{10-x}\)\(=< \sqrt{2\left(x-2+10-x\right)}\)\(=< 4\)
=> vp=<4
=>\(x^2-12x+40=< 4\)
=> \(\left(x-6\right)^2=< 0\)
=> xảy ra dấu = <=> x=6
vậy pt có nghiệm là 6
bn nhìn lước qua đề là bt thôi:
x=6; y=4 hoặc y=6; x=4
bn cứ thử đi, bài này cần tinh mắt. mink nghĩ ko cần cách giải
\(\dfrac{x}{y}=\dfrac{y}{10}=\dfrac{10}{x}=\dfrac{x+y+10}{y+10+x}=1\)
\(\Rightarrow x=y=10\)