Bài 1 Đưa một thừa số vào trong dấu căn
a.X nhân với căn 2/5
b.(x-5).(căn x /25-x*2)
c. x.căn 7/x*2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\sqrt{\dfrac{2}{x}}=\sqrt{x^2\cdot\dfrac{2}{x}}=\sqrt{2x}\)
\(x\sqrt{\dfrac{2}{5}}=\sqrt{\dfrac{2}{5}\cdot x^2}=\sqrt{\dfrac{2x^2}{5}}\)
\(\left(x-5\right)\cdot\sqrt{\dfrac{x}{25-x^2}}=\sqrt{\left(x-5\right)^2\cdot\dfrac{x}{-\left(x-5\right)\left(x+5\right)}}=\sqrt{-\dfrac{x\left(x-5\right)}{x+5}}\)
\(x\sqrt{\dfrac{7}{x^2}}=\sqrt{x^2\cdot\dfrac{7}{x^2}}=\sqrt{7}\)
a: \(13\sqrt{11}=\sqrt{13^2\cdot11}=\sqrt{1859}\)
b: \(-8\sqrt{2}=-\sqrt{64\cdot2}=-\sqrt{128}\)
c: \(a\sqrt{5a}=\sqrt{a^2\cdot5a}=\sqrt{5a^3}\)
d: \(b\sqrt{\dfrac{5}{ab}}=-\sqrt{b^2\cdot\dfrac{5}{ab}}=-\sqrt{\dfrac{5b}{a}}\)
a: \(xy^2\sqrt{x}=\sqrt{x^2y^4\cdot x}=\sqrt{x^3y^4}\)
b: \(\dfrac{2}{x}\sqrt{\dfrac{15xy}{4}}=-\sqrt{\dfrac{4}{x^2}\cdot\dfrac{15xy}{4}}=-\sqrt{\dfrac{15y}{x}}\)
Sửa đề: Đưa thừa số vào trong dấu căn
a: \(3\sqrt{x^2}=\sqrt{3^2\cdot x^2}=\sqrt{9x^2}\)
b: \(-5\sqrt{y^4}=-\sqrt{5^2\cdot y^4}=-\sqrt{25y^4}\)
c: \(3\sqrt{5x}=\sqrt{3^2\cdot5x}=\sqrt{45x}\)
d: \(x\sqrt{7}=\sqrt{x^2\cdot7}=\sqrt{7x^2}\)
\(\left(x-5\right)\sqrt{\frac{3}{25-x^2}}=\sqrt{\left(x-5\right)^2}\sqrt{\frac{3}{\left(5-x\right)\left(x+5\right)}}=\sqrt{\left(5-x\right)^2.\frac{3}{\left(5-x\right)\left(x+5\right)}}=\sqrt{\frac{3\left(5-x\right)}{x+5}}\)
a: \(3\sqrt{200}=3\cdot10\sqrt{2}=30\sqrt{2}\)
b: \(-5\sqrt{50a^2b^2}=-5\cdot5\sqrt{2a^2b^2}\)
\(=-25\cdot\left|ab\right|\cdot\sqrt{5}\)
c: \(-\sqrt{75a^2b^3}\)
\(=-\sqrt{25a^2b^2\cdot3b}=-5\left|ab\right|\cdot\sqrt{3b}\)
a, \(x.\sqrt{\frac{2}{5}}\) = \(\sqrt{x^2}.\sqrt{\frac{2}{5}}\) = \(\sqrt{\frac{x^2.2}{5}}\)
b, \(\left(x-5\right).\sqrt{\frac{x}{25-x^2}}\)= \(\sqrt{\left(x-5\right)^2}\). \(\sqrt{\frac{x}{\left(5-x\right)\left(5+x\right)}}\) = \(\sqrt{\frac{\left(x-5\right)^2.x}{\left(x-5\right)\left(x+5\right)}}\)= \(\sqrt{\frac{x.\left(x-5\right)}{x+5}}\)
c,\(x.\sqrt{\frac{7}{x^2}}\) = \(\sqrt{x^2}\). \(\sqrt{\frac{7}{x^2}}\) = \(\sqrt{\frac{x^2.7}{x^2}}\) = \(\sqrt{7}\)