Chứng minh x là số vô tỉ nếu:x^3 + 3x^2 − x + 3^n = 0 trong đó n thuộc N*
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn tham khảo nè:
giả sử x + y = a với a là số hữu tỉ
=> y = a - x
mà a và x là hữu tỉ nên a - x cũng hữu tỉ
(dễ dàng chứng minh điểu này bằng cách đặt a = p/q và x = m/n)
=> y cũng hữu tỉ
vô lý
Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
Ta có:
\(VT=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+n^2+2n+1+n^2}{n^2\left(n+1\right)}\left(1\right)\)
\(VP=\frac{\left(n^2+n+1\right)}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left[n\left(n+1\right)\right]}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left(n^2+1\right)}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2n^2+2n}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+2n+1+2n^2}{n^2\left(n+1\right)^2}\left(2\right)\)
Từ (1) và (2)
=>đpcm
Vì \(\sqrt{x}\)là một số hữu tỉ
\(\Rightarrow\sqrt{x}\)có dạng \(\frac{a}{b}\)(\(\frac{a}{b}\)là một phân số tối giản)
Vì \(\sqrt{x}\ge0\)và theo đề bài \(\frac{a}{b}\ne0\Rightarrow\frac{a}{b}\ge0\)
\(\Rightarrow a,b\)là những số nguyên dương (1)
Vì \(\sqrt{x}\)có dạng \(\frac{a}{b}\Rightarrow\left(\sqrt{x}\right)^2=\left(\frac{a}{b}\right)^2\Rightarrow x=\frac{a^2}{b^2}\)(2)
Vì \(\frac{a}{b}\)là phân số tối giản
\(\Rightarrow a,b\)là hai số nguyên tố cùng nhau
\(\Rightarrow\)ƯCLN(a,b)=1
Vì \(a^2\) có Ư(a), \(b^2\)có Ư(b)
\(\Rightarrow a^2,b^2\) là hai số nguyên tố cùng nhau
\(\Rightarrow\)ƯCLN(\(a^2,b^2\))=1
\(\Rightarrow\frac{a^2}{b^2}\) là phân số tối giản (3)
Từ (1), (2) và (3)
=>đpcm
Đề thiếu điều kiện n là số tự nhiên nhé
\(a)\)\(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-2\right)+...+3+2+1}\)
\(=\)\(\sqrt{\frac{n\left(n-1\right)}{2}+n+\frac{n\left(n-1\right)}{2}}\)
\(=\)\(\sqrt{\frac{2n\left(n-1\right)}{2}+n}\)
\(=\)\(\sqrt{n\left(n-1\right)+n}\)
\(=\)\(\sqrt{n\left(n-1+1\right)}\)
\(=\)\(\sqrt{n^2}\)
\(=\)\(\left|n\right|\)
Mà n là số tự nhiên nên \(n\ge0\)\(\Rightarrow\)\(\left|n\right|=n\)
Vậy \(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\) ( đpcm )
Chúc bạn học tốt ~
giả sử \(\sqrt{1+\sqrt{2}}=m\) ( m là số hữu tỉ )
\(\Rightarrow\sqrt{2}=m^2-1\)nên \(\sqrt{2}\)là số hữu tỉ ( vô lí )
vậy ...
b) giả sử \(m+\frac{\sqrt{3}}{n}=a\)( a là số hữu tỉ ) thì \(\frac{\sqrt{3}}{n}=a-m\Rightarrow\sqrt{3}=n\left(a-m\right)\)nên là số hữu tỉ ( vô lí )
vậy ....
Đặt \(P\left(x\right)=x^3+3x^2-x+3^n\)
Nếu \(P\left(x\right)\) có nghiệm hữu tỉ \(x=\dfrac{p}{q}\left(p\inℤ,q\inℕ^∗;\left(p,q\right)=1\right)\) thì \(p|3^n,q|1\Rightarrow q=1\) và \(p=3^k\left(k\le n\right)\)
Vậy \(x=3^k\) sẽ là nghiệm hữu tỉ duy nhất của \(P\left(x\right)\) hay \(P\left(3^k\right)=0\)
\(\Leftrightarrow\left(3^k\right)^3+3.\left(3^k\right)^2-3^k+3^n=0\)
\(\Leftrightarrow3^{3k}+3^{2k+1}-3^k+3^n=0\)
\(\Leftrightarrow3^{2k}+3^{k+1}-1+3^{n-k}=0\)
Ta thấy với \(n>k\) thì \(3^{2k}+3^{k+1}+3^{n-k}⋮3\) và \(0⋮3\) nên từ đây suy ra \(1⋮3\), vô lý.
Với \(n=k\) thì \(3^{2n}+3^{n+1}=0\), vô lý vì \(3^{2n}+3^{n+1}>0\) với \(n\inℕ^∗\)
Vậy \(P\left(x\right)\) không thể có nghiệm hữu tỉ. Do đó, nếu \(x^3+3x^2-x+3=0\) thì \(x\) chỉ có thể là một số vô tỉ. (đpcm)