Lê Song Phương

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Lê Song Phương
0
0
0
0
0
0
0
(Thường được cập nhật sau 1 giờ!)

BBT của \(f\left(x\right)\):

 

\(D=ℝ\)

Có \(y'=x^2-2x-m\)

Xét \(y'=0\) 

\(\Leftrightarrow x^2-2x-m=0\)

\(\Leftrightarrow m=x^2-2x\)    (1)

YCBT \(\Leftrightarrow\) (1) có 2 nghiệm phân biệt thuộc \(\left(3;4\right)\)

 Đặt \(f\left(x\right)=x^2-2x\). Khi đó \(f'\left(x\right)=2x-2\)

 \(f'\left(x\right)=0\Leftrightarrow x=1\)

 Lập BBT, ta thấy để \(m=f\left(x\right)\) có 2 nghiệm phân biệt thuộc \(\left(3;4\right)\) thì \(3< m< 8\)

 Khi đó \(m\in\left\{4;5;6;7\right\}\), suy ra có 4 giá trị nguyên của m thỏa mãn ycbt.

 -> Chọn B.

 

 

a) Ta có MH//AC \(\left(\perp AB\right)\) nên \(\Delta BMH\sim\Delta BAC\)

\(\Rightarrow\dfrac{BM}{BA}=\dfrac{MH}{AC}\) \(\Rightarrow BM.AC=BA.MH\)

Tam giác ABH vuông tại H có đường cao HM 

\(BA.MH=HB.HA\)     

Tương tự, ta có: \(CN.AB=HC.HA\)

Cộng theo vế 2 hệ thức trên, ta được:

\(BA.MH+CN.AB=HB.HA+HC.HA=HA\left(HB+HC\right)=AH.BC\)

Ta có đpcm.

b) Tam giác ABH vuông tại H có đường cao HM nên \(AM.BM=MH^2\).

 Tương tự, ta có \(AN.CN=HN^2\)

 Do đó \(VT=AM.BM+AN.CN=MH^2+HN^2\)

 Dễ thấy tứ giác AMHN là hình chữ nhật nên \(MH^2+HN^2=MN^2=AH^2\)

 Tam giác ABC vuông tại A có đường cao AH nên \(AH^2=BH.CH\)

 Từ đó suy ra \(VT=BH.CH=VP\)

 Vậy đẳng thức được chứng minh.

 c) Xét hệ trục tọa độ Axy với A là gốc tọa độ, \(Ax\equiv AC,Ay\equiv AB\)

 Khi đó đặt \(B\left(0;b\right)\)\(C\left(c;0\right)\)

 Khi đó phương trình đường thẳng \(BC:y=-\dfrac{b}{c}x+b\)

 \(\Rightarrow\) Phương trình đường thẳng \(AH:y=\dfrac{c}{b}x\)

 Khi đó hoành độ của điểm H chính là nghiệm của pt hoành độ giao điểm của AH và BC: \(\dfrac{c}{b}x_0=-\dfrac{b}{c}x_0+b\)

 \(\Leftrightarrow\left(\dfrac{c}{b}+\dfrac{b}{c}\right)x_0=b\) 

 \(\Leftrightarrow\left(\dfrac{c^2+b^2}{bc}\right)x_0=b\) 

 \(\Leftrightarrow x_0=\dfrac{cb^2}{b^2+c^2}\) 

 \(\Rightarrow y_0=\dfrac{c}{b}x_0=\dfrac{c}{b}.\dfrac{cb^2}{b^2+c^2}=\dfrac{bc^2}{b^2+c^2}\)

 Vậy \(H\left(\dfrac{cb^2}{b^2+c^2},\dfrac{bc^2}{b^2+c^2}\right)\)

 Vì M là hình chiếu của H lên trục Oy \(\Rightarrow M\left(0,\dfrac{bc^2}{b^2+c^2}\right)\)

 Tương tự \(\Rightarrow N\left(\dfrac{cb^2}{b^2+c^2},0\right)\)

 Khi đó \(BM=BA-MA=b-\dfrac{bc^2}{b^2+c^2}=\dfrac{b^3+bc^2-bc^2}{b^2+c^2}=\dfrac{b^3}{b^2+c^2}\)

\(CN=CA-NA=c-\dfrac{cb^2}{b^2+c^2}=\dfrac{cb^2+c^3-cb^2}{b^2+c^2}=\dfrac{c^3}{b^2+c^2}\)

 \(\Rightarrow\dfrac{BM}{CN}=\dfrac{\dfrac{b^3}{b^2+c^2}}{\dfrac{c^3}{b^2+c^2}}=\dfrac{b^3}{c^3}=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{AB}{AC}\right)^3\)

 \(\Rightarrow\sqrt[3]{\dfrac{MB}{NC}}=\dfrac{AB}{AC}\) (đpcm)

 

 Giả sử tồn tại một số tự nhiên \(a\) để với mọi số tự nhiên \(b\)\(ab+4\) không phải là số chính phương. Điều này có nghĩa là phương trình \(ab+4=k^2\left(k\inℕ,k\ge2\right)\) không có nghiệm tự nhiên \(\left(b,k\right)\).

 \(\Leftrightarrow b=\dfrac{k^2-4}{a}\) không có nghiêm tự nhiên. 

 Điều này tương đương với việc không tồn tại số tự nhiên \(k\) nào để \(k^2-4⋮a\).     (*)

 Ta sẽ chứng minh (*) vô lý.

 Thật vậy, nếu \(a\ge4\) thì tồn tại số tự nhiên \(k=am+2\left(m\inℕ\right)\) thỏa mãn:

\(k^2-4=\left(am+2\right)^2-4=a^2m^2+4am+4-4=a\left(am^2+4m\right)⋮a\)

 Nếu \(a=3\) thì tồn tại số \(k=3n+1\left(n\inℕ\right)\) để:

 \(k^2-4=\left(3n+1\right)^2-4=9n^2+6n+1-4=9n^2+6n-3⋮3\)

 Nếu \(a=2\) thì chỉ cần chọn \(k\) chẵn là xong.

 Như vậy ta đã chỉ ra rằng (*) vô lý. Do đó điều ta giả sử ban đầu là sai.

 Vậy ta có đpcm.

Tam giác ACE đều \(\Rightarrow AE=AC\) và \(\widehat{CAE}=60^o\)

Tam giác ABC vuông cân tại A \(\Rightarrow AB=AC\) và \(\widehat{BAC}=90^o\)

Từ đó \(\Rightarrow AE=AB\) \(\Rightarrow\Delta ABE\) cân tại A

Đồng thời \(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=90^o+60^o=150^o\)

 \(\Rightarrow\widehat{ABE}=\dfrac{180^o-\widehat{BAE}}{2}=\dfrac{180^o-150^o}{2}=15^o\)

Mặt khác, tam giác ADB cân tại và \(\widehat{ADB}=150^o\) nên tam giác ADB chí có thể cân tại D (vì nếu cân tại điểm khác thì khi đó trong tam giác ADB sẽ có 2 góc bằng \(150^o\), vô lý). Khi đó \(\widehat{ABD}=15^o\)

 Trên cùng 1 nửa mặt phẳng bờ là đường thẳng chứa tia BA, có \(\widehat{ABD}=\widehat{ABE}=15^o\) nên B, D, E thẳng hàng. (đpcm)

 

 

Mỗi kí tự có 10 cách chọn số, 26 cách chọn chữ in hoa và 26 cách chọn chữ in thường. Do đó mỗi kí tự có \(10+2.26=62\) cách chọn. Khi đó số mật khẩu có thể là \(62^{10}\) 

Trong trường hợp xấu nhất, kẻ gian sẽ mất \(62^{10}\) giây, để cho gọn hơn thì là \(62^{10}:60:60:24:365:100=266140083\) thể kỷ

 P/S: Đó là khi kẻ gian không chết trước khi phá được mật khẩu.

c) Xét pt \(x^3-3mx^2+\left(3m-1\right)x+6m=0\)   (*)

Ta thấy (*) có nghiệm \(x=-1\). Lập sơ đồ Horner:

  \(1\) \(-3m\) \(3m-1\) \(6m\)
\(x=-1\) \(1\) \(-3m-1\) \(6m\) \(0\)

Vậy (*) \(\Leftrightarrow\left(x+1\right)\left(x^2-\left(3m+1\right)x+6m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2-\left(3m+1\right)x+6m=0\end{matrix}\right.\)

Tới đây thì làm tương tự câu b) nhé.

 

b) Xét pt hoành độ giao điểm của hàm số đã cho và Ox là \(2x^3+2\left(6m-1\right)x^2-3\left(2m-1\right)x-3\left(1+2m\right)=0\)    (*)

Ta thấy \(x=1\) là nghiệm của pt trên. Lập sơ đồ Horner:

  \(2\) \(2\left(6m-1\right)\) \(-3\left(2m-1\right)\) \(-3\left(1+2m\right)\)
\(x=1\) \(2\) \(12m\) \(6m+3\) \(0\)

Do đó pt (*) 

\(\Leftrightarrow\left(x-1\right)\left(2x^2+12mx+6m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x^2+12mx+6m+3=0\end{matrix}\right.\)

 Xét pt \(2x^2+12mx+6m+3=0\)      (1)

 Ycbt \(\Leftrightarrow\) pt (1) có 2 nghiệm phân biệt \(x_1,x_2\) khác 1 và thỏa mãn \(x_1^2+x_2^2=27\)

 Có \(\Delta'=\left(6m\right)^2-2\left(6m+3\right)=36m^2-12m-6>0\) 

 \(\Leftrightarrow\left[{}\begin{matrix}m>\dfrac{1+\sqrt{7}}{6}\\m< \dfrac{1-\sqrt{7}}{6}\end{matrix}\right.\)

Có 2 nghiệm khác 1 \(\Leftrightarrow2.1^2+12m.1+6m+3\ne0\) 

\(\Leftrightarrow18m+5\ne0\)

\(\Leftrightarrow m\ne-\dfrac{5}{18}\)

Theo định lý Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-6m\\x_1x_2=\dfrac{6m+3}{2}\end{matrix}\right.\)

Để \(x_1^2+x_2^2=27\) 

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=27\)

\(\Leftrightarrow\left(-6m\right)^2-2.\dfrac{6m+3}{2}=27\)

\(\Leftrightarrow36m^2-6m-3=27\)

\(\Leftrightarrow6m^2-m-5=0\)

\(\Leftrightarrow6m^2-6m+5m-5=0\)

\(\Leftrightarrow6m\left(m-1\right)+5\left(m-1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left(6m+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\left(nhận\right)\\m=-\dfrac{5}{6}\left(nhận\right)\end{matrix}\right.\)

Vậy \(m=1\) hoặc \(m=-\dfrac{5}{6}\) thỏa ycbt.