K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2024

Ta thấy \(\dfrac{a+b}{2}+\sqrt{\dfrac{a^2+b^2}{2}}+\left(\dfrac{a+b}{2}-\sqrt{\dfrac{a^2+b^2}{2}}\right)=a+b\)

Điều này có nghĩa là khi ta xóa 2 số \(a,b\) và thay bằng 2 số \(\dfrac{a+b}{2}+\sqrt{\dfrac{a^2+b^2}{2}},\dfrac{a+b}{2}-\sqrt{\dfrac{a^2+b^2}{2}}\) thì tổng của các số trên bảng là không đổi.

Tổng các số trên bảng ban đầu là \(2021+2022+2023+2024=8090\), do đó, sau mỗi lượt chơi, tổng các số trên bảng luôn phải bằng 8090

Tuy nhiên, khi trên bảng còn 4 số 2025 thì tổng của chúng lại là \(4.2025=8100\). Như vậy, ta không thể có được 4 số 2025.

 

25 tháng 10 2018

Câu 1:

a, \(3\dfrac{3}{7}+2\dfrac{1}{2}\)

= \(\dfrac{24}{7}+\dfrac{5}{2}\)

= \(\dfrac{48+35}{14}=\dfrac{83}{14}=5\dfrac{13}{14}\)

b, \(12,5.\left(\dfrac{-5}{7}\right)+1,5.\left(\dfrac{-5}{7}\right)\)

= \(\left(\dfrac{-5}{7}\right).\left(12,5+1,5\right)\)

=\(\dfrac{-5}{7}.\dfrac{14}{1}=\dfrac{-5}{1}.\dfrac{2}{1}=\left(-10\right)\)

c, \(\dfrac{1}{2}\sqrt{144}-\sqrt{\dfrac{9}{16}}-\left(\dfrac{1}{2}\right)^2\)

= \(\dfrac{1}{2}.12-\dfrac{3}{4}-\dfrac{1}{4}\)

= \(\dfrac{12}{2}-\dfrac{3}{4}-\dfrac{1}{4}=\dfrac{24-3-1}{4}=\dfrac{20}{4}=5\)

25 tháng 10 2018

Các bạn giúp mk nhanh nha, mk đg cần gấp lắm. Thank you

17 tháng 6 2020

Giải:

+) Cứ mỗi bước xóa 2 số thêm 1 số  nghĩa là sẽ mất đi một số. Thực hiện 2019 lần theo quy tắc trên thì sẽ còn lại duy nhất 1 số

+) Dễ thấy trong 2020 phân số trên có số 1010/2020 = 1/2

+) Khi các em xóa đến một số bất kì x khác 1/2 thuộc dãy 2020 phân số đó và số 1/2 thì số mới xuất hiện sẽ là: 1/2 + x  - 2.1/2 .x = 1/2

Như vậy các e xóa đủ 2019 lần thì vẫn  chỉ còn số 1/2

22 tháng 7 2017

bn lấy máy tính mà tính ý

22 tháng 7 2017

Bài1:

Ta có:

a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)

b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)

c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)

Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)

Bài 2:

Không có đề bài à bạn?

Bài 3:

a)\(\sqrt{x}-1=4\)

\(\Rightarrow\sqrt{x}=5\)

\(\Rightarrow x=\sqrt{25}\)

\(\Rightarrow x=5\)

b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)

Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)

\(\Rightarrow\left(x-1\right)^2=16\)

\(\Rightarrow\left(x-1\right)^2=4^2\)

\(\Rightarrow x-1=4\)

\(\Rightarrow x=5\)

8 tháng 4 2017

Mỗi câu có nhiều đáp án, chẳng hạn:

a) =

b)



9 tháng 4 2017

Lời giải:

Mỗi câu có nhiều đáp án, chẳng hạn:

a) =

b)



31 tháng 10 2018

Bài 1 :

a) Vì \(\dfrac{x}{y}=\dfrac{5}{4}\)

\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\)

Áp dung tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{x-y}{5-4}=\dfrac{7}{1}=7\)

=> a = 7.5=35

b=7.4=28

Vậy a = 35 : b= 28

b) Bạn làm tương tự

6 tháng 11 2018

Bài 3:

a, \(x:\left(\dfrac{1}{3}-\dfrac{1}{5}\right)=\dfrac{-1}{2}\)

\(x:\left(\dfrac{5-3}{15}\right)=\dfrac{-1}{2}\)

\(x:\dfrac{2}{15}=\dfrac{-1}{2}\)

\(x=\dfrac{-1}{2}.\dfrac{2}{15}\)

\(x=\dfrac{\left(-1\right).1}{1.15}=\dfrac{-1}{15}\)

b,\(\left|x+1\right|-\dfrac{4}{5}=5\dfrac{1}{5}\)

\(\left|x+1\right|-\dfrac{4}{5}=\dfrac{26}{5}\)

\(\left|x+1\right|=\dfrac{26+4}{5}=\dfrac{30}{5}=6\)

=> \(x+1=\pm6\), ta có hai trường hợp:

Trường hợp 1:

x + 1 = 6

x = 6 - 1 = 5

Trường hợp 2:

x + 1 = -6

x = (- 6) + (- 1) = -7

Vậy x ∈ {5;-7}

7 tháng 11 2018

Gọi số học sinh lớp 7A, 7B, 7C lần lượt là: x; y; x, biết x; y; z tỉ lệ với 10; 9; 8, ta có:

\(\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{8}\) và x - y = 5

Theo tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{8}=\dfrac{x-y}{10-9}=\dfrac{5}{1}=5\)

Suy ra:

\(\dfrac{x}{10}=5\) => x = 5 . 10 = 50

\(\dfrac{y}{9}=5\) => y = 5 . 9 = 45

\(\dfrac{x}{8}=5\) => x = 5 . 8 = 40

=> x = 50, y = 45, z = 40

Vậy lớp 7A có 50 học sinh;

lớp 7B có 45 học sinh;

lớp 7C có 40 học sinh;

30 tháng 6 2017

1) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2010}=\dfrac{2010}{a}=\dfrac{a+b+c+2010}{b+c+2010+a}=1\)

\(\dfrac{2010}{a}=1\Rightarrow a=2010\);

\(\dfrac{c}{2010}=1\Rightarrow c=2010\);

\(\dfrac{b}{c}=1\Rightarrow\dfrac{b}{2010}=1\Rightarrow b=2010\).

Vậy (a, b, c) = (2010; 2010; 2010)

3)

a) \(A=\sqrt{x+24}+\dfrac{4}{7}\)

Có: \(\sqrt{x+24}\ge0\forall x\in R\)

\(\Rightarrow\sqrt{x+24}+\dfrac{4}{7}\ge\dfrac{4}{7}\forall x\in R\)

\(\Rightarrow A\ge\dfrac{4}{7}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+24}=0\Rightarrow x+24=0\Rightarrow x=-24\)

Vậy GTNN của \(A=\dfrac{4}{7}\Leftrightarrow x=-24\)

b) \(B=\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\)

Có: \(\sqrt{2x+\dfrac{4}{13}}\ge0\forall x\in R\)

\(\Rightarrow\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\ge-\dfrac{13}{191}\forall x\in R\)

\(\Rightarrow B\ge-\dfrac{13}{191}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{2x+\dfrac{4}{13}}=0\)

\(\Rightarrow2x+\dfrac{4}{13}=0\)

\(\Rightarrow2x=-\dfrac{4}{13}\)

\(\Rightarrow x=-\dfrac{2}{13}\)

Vậy GTNN của \(B=-\dfrac{13}{191}\Leftrightarrow x=-\dfrac{2}{13}\)

4)

a) \(A=-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\)

Có: \(\sqrt{x+\dfrac{5}{41}}\ge0\forall x\in R\)

\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}\le0\forall x\in R\)

\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\le\dfrac{7}{12}\forall x\in R\)

\(\Rightarrow A\le\dfrac{7}{12}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+\dfrac{5}{41}}=0\)

\(\Rightarrow x+\dfrac{5}{41}=0\)

\(\Rightarrow x=-\dfrac{5}{41}\)

Vậy GTLN của \(A=\dfrac{7}{12}\Leftrightarrow x=-\dfrac{5}{41}\)

b) \(B=\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\)

Có: \(\sqrt{x-\dfrac{2}{3}}\ge0\forall x\in R\)

\(\Rightarrow-\sqrt{x-\dfrac{2}{3}}\le0\forall x\in R\)

\(\Rightarrow\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\le\dfrac{-5}{13}\forall x\in R\)

\(\Rightarrow B\le\dfrac{-5}{13}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x-\dfrac{2}{3}}=0\)

\(\Rightarrow x-\dfrac{2}{3}=0\)

\(\Rightarrow x=\dfrac{2}{3}\)

Vậy GTLN của \(B=\dfrac{-5}{13}\Leftrightarrow x=\dfrac{2}{3}\)

1 tháng 7 2017

làm giup minh bai 2 luon nha

khocroi

6 tháng 12 2017

a) \(A=\dfrac{1}{\sqrt{25}}+\dfrac{\sqrt{49}}{\sqrt{36}}-\dfrac{2}{\sqrt{100}}.\)

\(=\dfrac{1}{5}+\dfrac{7}{6}-\dfrac{1}{5}.\)

\(=\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\dfrac{7}{6}.\)

\(=0+\dfrac{7}{6}=\dfrac{7}{6}.\)

Vậy \(A=\dfrac{7}{6}.\)

b) \(B=\sqrt{\dfrac{0,01}{1,21}}+3.\dfrac{2}{\sqrt{10^2}+2^2+40}-\dfrac{3}{4}.\)

\(=\dfrac{1}{11}+3.\dfrac{2}{10+4+40}-\dfrac{3}{4}.\)

\(=\dfrac{1}{11}+3.\dfrac{1}{37}-\dfrac{3}{4}.\)

\(=\dfrac{1}{11}+\dfrac{1}{9}-\dfrac{3}{4}.\)

\(=\dfrac{36}{396}+\dfrac{44}{396}-\dfrac{297}{296}.\)

\(=-\dfrac{217}{396}.\)

Vậy \(B=-\dfrac{217}{396}.\)

5 tháng 11 2018

Câu 1: Thực hiện phép tính :

a) \(2.\left(\dfrac{-2}{3}\right)^2-\dfrac{7}{2}=2.\dfrac{4}{9}-\dfrac{7}{2}\)

\(=\dfrac{8}{9}-\dfrac{7}{2}\)

\(=\dfrac{16}{18}-\dfrac{63}{18}=\dfrac{-47}{18}\)

\(b,5\dfrac{4}{13}.\dfrac{-3}{4}+3\dfrac{9}{13}.\left(-0,75\right)=\dfrac{69}{13}.\dfrac{-3}{4}+\dfrac{48}{13}.\dfrac{-3}{4}\)

\(=\left(\dfrac{69}{13}+\dfrac{48}{13}\right).\dfrac{-3}{4}\)

\(=\dfrac{117}{13}.\dfrac{-3}{4}\)

\(=9.\dfrac{-3}{4}=\dfrac{-27}{4}\)

\(c,\left(-1\right)^{2017}+\left|\dfrac{-1}{13}\right|+\sqrt{\dfrac{144}{169}}=-1+\dfrac{1}{13}+\dfrac{12}{13}\)

\(=-1+\dfrac{13}{13}\)

\(=-1+1=0\)

5 tháng 11 2018

Câu 3: Tìm x, biết:

a)\(\dfrac{3}{5}-x=25\)

\(x=\dfrac{3}{5}-\dfrac{125}{5}\)

\(x=\dfrac{-122}{5}\)

b)\(\dfrac{2}{3}\left|x-1\right|+\dfrac{1}{4}=\dfrac{5}{3}\)

\(\dfrac{2}{3}\left|x-1\right|=\dfrac{20}{12}-\dfrac{3}{12}\)

\(\dfrac{2}{3}\left|x-1\right|=\dfrac{17}{12}\)

\(\left|x-1\right|=\dfrac{17}{12}:\dfrac{2}{3}\)

\(\left|x-1\right|=\dfrac{17}{12}.\dfrac{3}{2}\)

\(\left|x-1\right|=\dfrac{17}{8}\)

Ta có 2 TH: TH1:\(x-1=\dfrac{17}{8}\) TH2:\(x-1=\dfrac{-17}{8}\) \(x=\dfrac{17}{8}+1\) \(x=\dfrac{-17}{8}+1\) \(x=\dfrac{17}{8}+\dfrac{8}{8}=\dfrac{25}{8}\) \(x=\dfrac{-17}{8}+\dfrac{8}{8}=\dfrac{-9}{8}\) Vậy x∈\(\left\{\dfrac{25}{5};\dfrac{-9}{8}\right\}\)