cho 5 cuốn sách toán, 4 sách văn và 3 sách anh, số cách chọn 5 cuốn sách sao cho mỗi loại còn ít nhất một quyển
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Loại 1: chọn tùy ý 7 cuôn từ 19 cuốn C719 = 50388 cách
Loại 2: chọn 7 cuốn từ 2 môn
TH1: hóa +lí : C711 = 330
TH2: lí+ toán: C714 = 3432
TH3: hóa+ toán: C713 = 1716
tổng = 5478
ta có: loại 1 - loại 2 = 50388-5478=44910( cách)
Không gian mẫu là số cách chọn ngẫu nhiên 5 trong 10 cuốn sách rồi tặng cho 5 học sinh.
Suy ra số phần tử của không gian mẫu là .
Gọi A là biến cố Sau khi tặng sách thì mỗi một trong ba loại sách của thầy giáo còn lại ít nhất một cuốn .
Để tìm số phần tử của A, ta tìm số phần tử của biến cố , tức sau khi tặng sách có môn không còn lại cuốn nào.
Vì tổng số sách của hai loại bất kỳ lớn hơn 5 cuốn nên không thể chọn sao cho cùng hết 2 loại sách. Do vậy chỉ có thể một môn hết sách, ta có các khả năng:
Cách tặng sao cho không còn sách Toán, tức là ta tặng 4 cuốn sách toán, 1 cuốn còn lại Lý hoặc Hóa
+) 4 cuốn sách Toán tặng cho 4 người trong 5 người, có cách.
+) 1 người còn lại được tặng 1 cuốn trong 6 cuốn (Lý và Hóa), có .
Suy ra có cách tặng sao cho không còn sách Toán.
Tương tự, có cách tặng sao cho không còn sách Lý.
Tương tự, có cách tặng sao cho không còn sách Hóa.
Suy ra số phần tử của biến cố là.720+2520+2520=5760
Suy ra số phần tử của biến cố A là.30240-5760=24480
Vậy xác suất cần tính
Chọn C.
Đáp án D.
Sô cách lấy bằng số cách chọn ra 6 quyển để bỏ lại. Yêu cầu đặt ra là 6 quyển để lại phải đủ cả 3 môn.
TH1: 1 văn, 2 âm nhạc, 3 hội họa: C 5 1 . C 4 2 . C 3 3
TH2: 1 văn, 3 âm nhạc, 2 hội họa: C 5 1 . C 4 3 . C 3 2
TH3: 1 văn, 4 âm nhạc, 1 hội họa: C 5 1 . C 4 4 . C 3 1
TH4: 2 văn, 1 âm nhạc, 3 hội họa: C 5 2 . C 4 1 . C 3 3
TH5: 2 văn, 2 âm nhạc, 2 hội họa: C 5 2 . C 4 2 . C 3 2
TH6: 2 văn, 3 âm nhạc, 1 hội họa: C 5 2 . C 4 3 . C 3 1
TH7: 3 văn, 1 âm nhạc, 2 hội họa: C 5 3 . C 4 1 . C 3 2
TH8: 3 văn, 2 âm nhạc, 1 hội họa: C 5 3 . C 4 2 . C 3 1
TH9: 4 văn, 1 âm nhạc, 1 hội họa: C 5 4 . C 4 1 . C 3 1
Lấy 6 quyển sách chia cho 6 bạn: 6! = 720
Nhân lại ta có : 579600 cách
Đáp án D.
Sô cách lấy bằng số cách chọn ra 6 quyển để bỏ lại. Yêu cầu đặt ra là 6 quyển để lại phải đủ cả 3 môn.
TH1: 1 văn, 2 âm nhạc, 3 hội họa: C 5 1 . C 4 2 . C 3 3 .
TH2: 1 văn, 3 âm nhạc, 2 hội họa: C 5 1 . C 4 3 . C 3 2 .
TH3: 1 văn, 4 âm nhạc, 1 hội họa: C 5 1 . C 4 4 . C 3 1
TH4: 2 văn, 1 âm nhạc, 3 hội họa: C 5 2 . C 4 1 . C 3 3 .
TH5: 2 văn, 2 âm nhạc, 2 hội họa: C 5 2 . C 4 2 . C 3 2 .
TH6: 2 văn, 3 âm nhạc, 1 hội họa: C 5 2 . C 4 3 . C 3 1 .
TH7: 3 văn, 1 âm nhạc, 2 hội họa: C 5 3 . C 4 1 . C 3 2 .
TH8: 3 văn, 2 âm nhạc, 1 hội họa: C 5 3 . C 4 2 . C 3 1 .
TH9: 4 văn, 1 âm nhạc, 1 hội họa: C 5 4 . C 4 1 . C 3 1 .
Lấy 6 quyển sách chia cho 6 bạn: 6 ! = 720
Nhân lại ta có : 579600 cách
Vì mỗi chồng sách có chiều cao bằng nhau nên chiều cao của mỗi chồng sách là bội chung của 15; 6; 8
Vì chiều cao của mỗi chồng là nhỏ nhất nên chiều cao của mỗi chồng là bội chung nhỏ nhất của 15; 6; 8
15= 3.5; 6 = 2.3; 8 = 23
BCNN( 15;6;8) = 23.3.5 = 120
Chiều cao nhỏ nhất của ba chồng sách là 120 mm
Gọi x (mm) là chiều cao nhỏ nhất cần tìm (x ∈ ℕ*)
x = BCNN(15; 6; 8)
Ta có:
15 = 3.5
6 = 2.3
8 = 2³
x = BCNN(15; 6; 8) = 2³.3.5 = 120
Vậy chiều cao nhỏ nhất cần tìm là 120 mm
Đáp án B
Gọi biến cố A: “Số cuốn sách còn lại của thầy Tuấn có đủ cả ba môn”.
Khi đó ta có biến cố: A ¯ : “Số cuốn sách còn lại của thầy Tuấn không có đủ cả 3 môn”.
Chọn C
Xét phép thử T: “Chọn 7 cuốn sách từ 15 cuốn sách”.
Số phần tử của không gian mẫu trong phép thử là C 15 7 .
Gọi A biến cố chọn 7 cuốn sách có đủ 3 môn trong phép thử T.
Xác suất của biến cố cần tìm bằng xác suất của biến cố A.
Ta có
Vậy
Số cách tặng 6 quyển sách tuỳ ý là:
Số cách tặng hết sách lí 5!.13 = 1560
Số cách tặng hết sách hoá: 6! = 720
Số cách tặng thỏa yêu cầu bài toán: -1560 - 720 = 13363800
Chọn C
Số cách chọn 5 trong số 12 cuốn sách là \(C^5_{12}\)
Ta đi tính số cách chọn 5 trong 12 cuốn sách sao cho không có cả 3 loại sách trong số sách còn lại.
TH1: Chọn 5 quyển sách toán \(\Rightarrow\) Có 1 cách.
TH2: Chọn 4 quyển sách văn và 1 quyển sách khác \(\Rightarrow\) Có 8 cách.
TH3: Chọn 3 quyển sách anh và 2 quyển sách khác \(\Rightarrow\) Có \(C^2_9=36\) cách.
Vậy có tất cả \(1+8+36=45\) cách chọn 5 quyển sách sao cho trong số sách còn lại không chứa cả 3 loại sách.
\(\Rightarrow\) Có \(C^5_{12}-45=747\) cách chọn thỏa mãn ycbt.