Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Sô cách lấy bằng số cách chọn ra 6 quyển để bỏ lại. Yêu cầu đặt ra là 6 quyển để lại phải đủ cả 3 môn.
TH1: 1 văn, 2 âm nhạc, 3 hội họa: C 5 1 . C 4 2 . C 3 3
TH2: 1 văn, 3 âm nhạc, 2 hội họa: C 5 1 . C 4 3 . C 3 2
TH3: 1 văn, 4 âm nhạc, 1 hội họa: C 5 1 . C 4 4 . C 3 1
TH4: 2 văn, 1 âm nhạc, 3 hội họa: C 5 2 . C 4 1 . C 3 3
TH5: 2 văn, 2 âm nhạc, 2 hội họa: C 5 2 . C 4 2 . C 3 2
TH6: 2 văn, 3 âm nhạc, 1 hội họa: C 5 2 . C 4 3 . C 3 1
TH7: 3 văn, 1 âm nhạc, 2 hội họa: C 5 3 . C 4 1 . C 3 2
TH8: 3 văn, 2 âm nhạc, 1 hội họa: C 5 3 . C 4 2 . C 3 1
TH9: 4 văn, 1 âm nhạc, 1 hội họa: C 5 4 . C 4 1 . C 3 1
Lấy 6 quyển sách chia cho 6 bạn: 6! = 720
Nhân lại ta có : 579600 cách
Số cách tặng 6 quyển sách tuỳ ý là:
Số cách tặng hết sách lí 5!.13 = 1560
Số cách tặng hết sách hoá: 6! = 720
Số cách tặng thỏa yêu cầu bài toán: -1560 - 720 = 13363800
Chọn C
Chọn C
Xét phép thử T: “Chọn 7 cuốn sách từ 15 cuốn sách”.
Số phần tử của không gian mẫu trong phép thử là C 15 7 .
Gọi A biến cố chọn 7 cuốn sách có đủ 3 môn trong phép thử T.
Xác suất của biến cố cần tìm bằng xác suất của biến cố A.
Ta có
Vậy
Đáp án là A.
• Ta tìm số cách chọn 7 cuốn còn lại sao cho không có đủ 3 môn.
Có 3 trường hợp :
• 7 cuốn còn lại gồm 2 môn toán lý : có C 9 7 cách
• 7 cuốn còn lại gồm 2 môn lý hóa : có C 11 7 cách
• 7 cuốn còn lại gồm 2 môn toán hóa : có C 10 7 cách
Suy ra có C 9 7 + C 11 7 + C 10 7 = 486 cách chọn 7 cuốn còn lại sao cho không có đủ 3 môn. Do đó số cách chọn 8 cuốn sao cho 7 cuốn còn lại có đủ 3 môn là C 15 7 - 486 = 5949 cách.
Xác suất cần tìm là P = 5949 C 15 7 = 661 715
Đáp án B
Gọi biến cố A: “Số cuốn sách còn lại của thầy Tuấn có đủ cả ba môn”.
Khi đó ta có biến cố: A ¯ : “Số cuốn sách còn lại của thầy Tuấn không có đủ cả 3 môn”.
`Loại 1: chọn tùy ý 7 cuôn từ 19 cuốn C719 = 50388 cách
Loại 2: chọn 7 cuốn từ 2 môn
TH1: hóa +lí : C711 = 330
TH2: lí+ toán: C714 = 3432
TH3: hóa+ toán: C713 = 1716
tổng = 5478
ta có: loại 1 - loại 2 = 50388-5478=44910( cách)
Ta xếp các cuốn sách cùng một bộ môn thành một nhóm
Trước hết ta xếp 3 nhóm lên kệ sách chúng ta có: 3!=6 cách xếp
Với mỗi cách xếp 3 nhóm đó lên kệ ta có 5! cách hoán vị các cuốn sách Toán, 6! cách hoán vị các cuốn sách Lý và 8! cách hoán vị các cuốn sách Hóa
Vậy theo quy tắc nhân có tất cả: 6.5!.6!.8 cách xếp
Chọn đáp án B
Ta xếp các cuốn sách cùng một bộ môn thành một nhóm
Trước hết ta xếp 3 nhóm lên kệ sách chúng ta có: 3!=6 cách xếp
Với mỗi cách xếp 3 nhóm đó lên kệ ta có 5! cách hoán vị các cuốn sách Toán, 6! cách hoán vị các cuốn sách Lý và 8! cách hoán vị các cuốn sách Hóa
Vậy theo quy tắc nhân có tất cả: 6.5!.6!.8! cách xếp
Chọn đáp án B.
Không gian mẫu là số cách chọn ngẫu nhiên 5 trong 10 cuốn sách rồi tặng cho 5 học sinh.
Suy ra số phần tử của không gian mẫu là .
Gọi A là biến cố Sau khi tặng sách thì mỗi một trong ba loại sách của thầy giáo còn lại ít nhất một cuốn .
Để tìm số phần tử của A, ta tìm số phần tử của biến cố , tức sau khi tặng sách có môn không còn lại cuốn nào.
Vì tổng số sách của hai loại bất kỳ lớn hơn 5 cuốn nên không thể chọn sao cho cùng hết 2 loại sách. Do vậy chỉ có thể một môn hết sách, ta có các khả năng:
Cách tặng sao cho không còn sách Toán, tức là ta tặng 4 cuốn sách toán, 1 cuốn còn lại Lý hoặc Hóa
+) 4 cuốn sách Toán tặng cho 4 người trong 5 người, có cách.
+) 1 người còn lại được tặng 1 cuốn trong 6 cuốn (Lý và Hóa), có .
Suy ra có cách tặng sao cho không còn sách Toán.
Tương tự, có cách tặng sao cho không còn sách Lý.
Tương tự, có cách tặng sao cho không còn sách Hóa.
Suy ra số phần tử của biến cố là.720+2520+2520=5760
Suy ra số phần tử của biến cố A là.30240-5760=24480
Vậy xác suất cần tính
Chọn C.