K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2021

\(x=2021\Leftrightarrow x+1=2022\\ \Leftrightarrow P=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x\\ P=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x\\ P=0\)

4 tháng 10 2021

\(P=x^5-2022x^4+2022x^3-2022x^2+2022x-2021=x^4\left(x-2021\right)-x^3\left(x-2021\right)+x^2\left(x-2021\right)-x\left(x-2021\right)+\left(x-2021\right)\)

\(=\left(x-2021\right)\left(x^4-x^3+x^2-x+1\right)\)

\(=\left(2021-2021\right)\left(x^4-x^3+x^2-x+1\right)=0\)

 

15 tháng 3 2022

\(x=\dfrac{-6.\left(-15\right)}{45}=2\)

15 tháng 3 2022

\(\dfrac{x}{-6}=\dfrac{-15}{45}\)

\(x=\dfrac{\left(-15\right)\cdot\left(-6\right)}{45}\)

\(x=2\)

22 tháng 3 2022

15/19

23 tháng 5 2021

\(N=2\times2\times....\times2\times5\times5\times...\times5\)

Trong đó có : 2018 thừa số 2

                       2008 thừa số 5

=>\(N=2\times2\times....\times2\times5\times5\times...\times5\)

     \(N=2^{2018}\times5^{2008}\)

      \(N=2^{2008}\times2^{10}\times5^{2008}\)

       \(N=\left(2\times5\right)^{2008}\times2^{10}\)

        \(N=10^{2008}\times2^{10}\)

Mà \(10^{2008}\)có 2009 số

         \(2^{10}\)có 4 số

=>  N có 2012 số

11 tháng 5 2022

sửa x^2 - x^2y + y^2 + 4xy 

Thay x = 1 ; y = 2 vào ta được 

\(1-2+4+8=11\)

Giải:

A=|x-2|+|y+5|-15

Xét thấy: |x-2|+|y+5| > hoặc = 0 với mọi x

=>|x-2|+|y+5|-15 > hoặc = 0-15

          A > hoặc = -15

A nhỏ nhất = -15 khi và chỉ khi:

|x-2|+|y+5|=0

=> x-2=0 và y+5=0

        x=2 và y=-5

Vậy (x;y)=(2;-5)

Chúc bạn học tốt!

à quên cái dòng ''xét thấy'' là với mọi x và y nha bạn, mk quên ghi đấy!khocroi

13 tháng 9 2017

72 : ( x - 15 ) = 8

        x - 15   = 72 : 8

        x - 15   = 9

        x          = 9 + 15

        x          = 24

Vậy x = 24 .

Học tốt !

13 tháng 9 2017

=> x-15 = 72:8 = 9

=> x = 9+ 15 = 24