Xác định a,b để (d1):(2a-1)x+by=a, (d2):(b-2)x-(a+3)y=1-a cắt nhau tại điểm M(2;-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Phương trình hoành độ giao điểm của d1 và d2:
\(-x-1=x-1\)
\(\Leftrightarrow x=0\)
\(\Rightarrow y=-1\)
\(\Rightarrow I=\left(0;-1\right)\)
b, d3 có phải thế này không \(y=m\)
Giả sử A là giao điểm của d1 và d3, B là giao điểm d2 và d3
\(\Rightarrow A\left(m-1;m\right);B\left(m+1;m\right)\)
Dễ thấy \(\left(d_1\right)\perp\left(d_2\right)\)
\(\Rightarrow S_{IAB}=\dfrac{1}{2}IA.IB=\dfrac{1}{2}\sqrt{\left(m-1\right)^2+\left(m+1\right)^2}.\sqrt{\left(m+1\right)^2+\left(m+1\right)^2}=9\)
\(\Leftrightarrow\sqrt{2}\left|m+1\right|\sqrt{2m^2+2}=18\)
Đến đây giải ra m rồi kết luận
a) Tọa độ giao điểm của (d1) và (d2) là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y=-x-1\\y=x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x-1=x-1\\y=x-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x-1-x+1=0\\y=x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x=0\\y=x-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0-1=-1\end{matrix}\right.\)
Vậy: Tọa độ giao điểm của (d1) và (d2) là (0;-1)
a: Tọa độ A là:
\(\left\{{}\begin{matrix}x+2=-x-2\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=-4\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-2+2=0\end{matrix}\right.\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x+2=-2x+2\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=0\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0+2=2\end{matrix}\right.\)
Tọa độ C là:
\(\left\{{}\begin{matrix}-x-2=-2x+2\\y=-x-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=4\\y=-4-2=-6\end{matrix}\right.\)
Vậy: A(-2;0); B(0;2); C(4;-6)
b: \(AB=\sqrt{\left(0+2\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)
\(AC=\sqrt{\left(4+2\right)^2+\left(-6-0\right)^2}=6\sqrt{2}\)
\(BC=\sqrt{\left(4-0\right)^2+\left(-6-2\right)^2}=\sqrt{4^2+8^2}=4\sqrt{5}\)
Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=0\)
=>\(\widehat{BAC}=90^0\)
=>ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\sqrt{2}\cdot6\sqrt{2}=12\)
a: Thay x=-2 và y=-2 vào (d1), ta đc:
-2(2m+1)+m-3=-2
=>-4m-2+m-3=-2
=>-3m-5=-2
=>-3m=3
=>m=-1
b: Tọa độ giao của (d2) với trục hoành là:
y=0 và (2a+1)x+4a-3=0
=>x=-4a+3/2a+1
Để x nguyên thì -4a-2+5 chia hết cho 2a+1
=>\(2a+1\in\left\{1;-1;5;-5\right\}\)
=>\(a\in\left\{0;-1;2;-3\right\}\)
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}k-2=1\\k+2\ne-1\end{matrix}\right.\Leftrightarrow k=3\)
Thay x=2 và y=-1 vào (d1), ta được:
2(2a-1)+b*(-1)=a
=>4a-2-b-a=0
=>3a-b=2(1)
Thay x=2 và y=-1 vào (d2), ta được:
2(b-2)-(a+3)(-1)=1-a
=>2b-4+a+3=1-a
=>a+2b-1-1+a=0
=>2a+2b=2
=>a+b=1(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=1\\3a-b=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4a=3\\a+b=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=\dfrac{3}{4}\\b=\dfrac{1}{4}\end{matrix}\right.\)