Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay y = 3 vào phương trình đường thẳng d 2 ta được − x − 1 = 3 ⇔ x = − 4
Suy ra tọa độ giao điểm của d 1 v à d 2 là (−4; 3)
Thay x = − 4 ; y = 3 vào phương trình đường thẳng d 1 ta được:
2 ( m − 2 ) . ( − 4 ) + m = 3 ⇔ − 7 m + 16 = 3 ⇔ m = 13 7
Vậy m = 13 7
Đáp án cần chọn là: D
Để (d1) cắt (d2) tại một điểm nằm trên trục tung thì
\(\left\{{}\begin{matrix}m-2\ne-1\\m^2+2=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne1\\m^2=1\end{matrix}\right.\Leftrightarrow m=-1\)
Ta có phương trình hoành độ giao điểm của d 1 v à d 2 : m x – 2 = 1 2 x + 1 ( * )
Để hai đường thẳng d 1 v à d 2 cắt nhau tại một điểm có hoành độ x = − 4 t h ì x = − 4 thỏa mãn phương trình (*)
Suy ra m . ( − 4 ) – 2 = 1 2 . ( − 4 ) + 1 ⇔ − 4 m – 2 = − 2 + 1 ⇔ − 4 m = 1 ⇔ m = 1 4
Đáp án cần chọn là: A
Thay y = 4 vào phương trình đường thẳng d 2 ta được x + 1 = 4 ⇔ x = 3
Suy ra tọa độ giao điểm của d 1 v à d 2 l à ( 3 ; 4 )
Thay x = 3 ; y = 4 vào phương trình đường thẳng d 1 ta được:
( m + 1 ) . 3 – 1 = 4 ⇔ m + 1 = 5 3 ⇔ m = 2 3
Vậy m = 2 3
Đáp án cần chọn là: C
Ta có phương trình hoành độ giao điểm của d 1 v à d 2 : m 2 x + 1 = 3 x − 2 ( * )
Để hai đường thẳng d 1 v à d 2 cắt nhau tại một điểm có hoành độ x = − 1 t h ì x = − 1 thỏa mãn phương trình (*)
Suy ra m 2 . ( − 1 ) + 1 = 3 . ( − 1 ) – 2 ⇔ - m 2 + 1 = − 5 ⇔ - m 2 = − 6 ⇔ m = 12
Đáp án cần chọn là: B
Lời giải:
Để hai đường thẳng song song nhau thì:
\(\left\{\begin{matrix} k+3=4\\ m+1\neq 3-m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=1\\ m\neq 1\end{matrix}\right.\)
Để hai đt cắt nhau thì: \(\left\{\begin{matrix} k+3\neq 4\\ m\in\mathbb{R}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k\neq 1\\ m\in\mathbb{R}\end{matrix}\right.\)
Để hai đt trùng nhau thì: \(\left\{\begin{matrix} k+3=4\\ m+1=3-m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=1\\ m=1\end{matrix}\right.\)
Để hai đt cắt nhau tại 1 điểm trên trục tung thì:
PT hoành độ giao điểm $(k+3)x+m+1=4x+3-m$ nhận $x=0$ là nghiệm
$\Leftrightarrow x(k-1)+(2m-2)=0$ nhận $x=0$ là nghiệm
$\Leftrightarrow 2m-2=0$
$\Leftrightarrow m=1$
Vậy $m=1$ và $k\in\mathbb{R}$ bất kỳ.
Để 2 đt vuông góc thì $(k+3).4=-1$ và $m$ bất kỳ
$\Leftrightarrow k=\frac{-13}{4}$ và $m$ bất kỳ.
* y= (k-3)x-3k+3 (d1)
a= k-3 ; b= -3k+3
* y=(2k+1)x+k+5 (d2)
a'= 2k+1 ; b' k+5
a, Để hai đường thẳng cắt nhau thì :
\(a\ne a'< =>k-3\ne2k+1\)
\(< =>k-2k\ne1+3\)
\(< =>-k\ne4\)
<=>\(k\ne-4\)
Vậy \(k\ne-4\) thì hai đường thẳng cắt nhau
b, Để hai đường thẳng cắt nhau tại điểm trên trục tung thì :
\(\begin{cases}a\ne a'\\b=b'\end{cases}\Leftrightarrow\begin{cases}k-3\ne2k+1\\-3k+3=k+5\end{cases}}\)\(\Leftrightarrow\begin{cases}k-2k\ne1+3\\-3k-k=5-3\end{cases}\Leftrightarrow\begin{cases}k\ne-4\\k=-\frac{1}{2}\left(TMĐK:k\ne-4\right)\end{cases}}\)Vậy \(k=-\frac{1}{2}\) thì hai đường thẳng cắt nhau tại điểm trên trục tung