\(\left\{{}\begin{matrix}ax+2ay=a+1\\x+\left(a+1\right)y=2\end{matrix}\right.\)
tìm a để hệ có nghiệm duy nhất (x;y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Thay x=1 và y=0 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}1+a\cdot0=1\\a\cdot1+0=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1=1\left(đúng\right)\\a=2\end{matrix}\right.\)
=>a=2
2: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{a}\ne\dfrac{a}{1}\)
=>\(a^2\ne1\)
=>\(a\notin\left\{1;-1\right\}\)
a: Khi a=1 thì hệ sẽ là x-y=1 và x+y=1
=>Hệ vô nghiệm
b: Để hệ có nghiệm duy nhất thì 1/a<>-1/1=-1
=>a<>-1
a. Bạn tự giải.
b.
\(\left\{{}\begin{matrix}ax-2y=a\\-4x+2y=2a+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}ax-2y=a\\\left(a-4\right)x=3a+2\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi \(a-4\ne0\Leftrightarrow a\ne4\)
Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{3a+2}{a-4}\\y=\dfrac{a^2+3a}{a-4}\end{matrix}\right.\)
\(x-y=1\Leftrightarrow\dfrac{3a+2}{a-4}-\dfrac{a^2+3a}{a-4}=1\)
\(\Leftrightarrow\dfrac{2-a^2}{a-4}=1\Leftrightarrow2-a^2=a-4\)
\(\Leftrightarrow a^2+a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-3\end{matrix}\right.\)
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} ax-2y=a\\ y=a+1+2x\end{matrix}\right.\Rightarrow ax-2(a+1+2x)=a\)
\(\Leftrightarrow x(a-4)=3a+2(*)\)
Để hệ pt đã cho có nghiệm $(x,y)$ duy nhất thì PT $(*)$ phải có nghiệm $x$ duy nhất
Điều này xảy ra khi $a-4\neq 0\Leftrightarrow a\neq 4$
a: \(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}y=2\\\dfrac{3}{2}x-y=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\3x-2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-2y=8\\3x-2y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\2x-y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=2x-4=6\end{matrix}\right.\)
Để hệ có nghiệm duy nhất thì \(\dfrac{a}{1}\ne\dfrac{2a}{a+1}\)
=>\(a\left(a+1\right)\ne2a\)
=>\(a^2+a-2a\ne0\)
=>\(a^2-a\ne0\)
=>\(a\left(a-1\right)\ne0\)
=>\(a\notin\left\{0;1\right\}\)