K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 5 2021

Lời giải:

HPT \(\Leftrightarrow \left\{\begin{matrix} ax-2y=a\\ y=a+1+2x\end{matrix}\right.\Rightarrow ax-2(a+1+2x)=a\)

\(\Leftrightarrow x(a-4)=3a+2(*)\)

Để hệ pt đã cho có nghiệm $(x,y)$ duy nhất thì PT $(*)$ phải có nghiệm $x$ duy nhất

Điều này xảy ra khi $a-4\neq 0\Leftrightarrow a\neq 4$

 

3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r

NV
2 tháng 3 2021

a. Bạn tự giải

b. \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi \(m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{m}{m+2}\\y=\dfrac{m-1}{m+2}\end{matrix}\right.\) 

\(x+y^2=1\Leftrightarrow\dfrac{m}{m+2}+\left(\dfrac{m-1}{m+2}\right)^2=1\)

\(\Leftrightarrow m^2-4m-3=0\)

\(\Leftrightarrow...\)

2 tháng 3 2021

anh ơi :^^

9 tháng 3 2022

Thay vào ta được 

\(\left\{{}\begin{matrix}a=2a-1\\-1=a^2-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a^2-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)

 

9 tháng 3 2022

Nguyễn Huy Tú ( ✎﹏IDΣΛ... CTV, bn ơi cho mình hỏi tí:

Nếu mình làm như này có đúng không bạn:

\(\left\{{}\begin{matrix}a-1=0\\a^2-1=0\end{matrix}\right.\Leftrightarrow a-1=a^2-1\) rồi giải ra tìm được a=0 hoặc a=1 có đúng không bạn??

Để hệ có nghiệm duy nhất thì \(\dfrac{a}{1}\ne\dfrac{2a}{a+1}\)

=>\(a\left(a+1\right)\ne2a\)

=>\(a^2+a-2a\ne0\)

=>\(a^2-a\ne0\)

=>\(a\left(a-1\right)\ne0\)

=>\(a\notin\left\{0;1\right\}\)

Thay x=1 và y=2 vào HPT, ta được:

\(\left\{{}\begin{matrix}a+2=3\\2+2=a^2+3\end{matrix}\right.\Leftrightarrow a=1\)

17 tháng 1 2022

\(\left\{{}\begin{matrix}2x-y=m+2\\x-2y=3m+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x-2y=2m+4\\x-2y=3m+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x-2y-x+2y=2m+4-3m-4\\x-2y=3m+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=-m\\x-2y=3m+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{m}{3}\\-\dfrac{m}{3}-2y=3m+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{m}{3}\\-2y=\dfrac{10}{3}m+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{m}{3}\\y=\dfrac{-5}{3}m-2\end{matrix}\right.\)

Để \(x^2+y^2=10\)

\(\Leftrightarrow\left(\dfrac{-m}{3}\right)^2+\left(\dfrac{-5x}{3}-2\right)^2=10\)

\(\Leftrightarrow\dfrac{m^2}{9}+\dfrac{25m^2}{9}+\dfrac{20m}{3}+4=10\)

\(\Leftrightarrow\dfrac{26m^2}{9}+\dfrac{20m}{3}-6=0\)

\(\Leftrightarrow\dfrac{26m^2}{9}+\dfrac{60m}{9}-\dfrac{54}{9}=0\)

\(\Leftrightarrow26m^2+60m-54=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=\dfrac{9}{13}\end{matrix}\right.\)