K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Khi a=1 thì hệ sẽ là x-y=1 và x+y=1

=>Hệ vô nghiệm

b: Để hệ có nghiệm duy nhất thì 1/a<>-1/1=-1

=>a<>-1

NV
29 tháng 1 2021

a. Bạn tự giải.

b.

\(\left\{{}\begin{matrix}ax-2y=a\\-4x+2y=2a+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}ax-2y=a\\\left(a-4\right)x=3a+2\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi \(a-4\ne0\Leftrightarrow a\ne4\)

Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{3a+2}{a-4}\\y=\dfrac{a^2+3a}{a-4}\end{matrix}\right.\)

\(x-y=1\Leftrightarrow\dfrac{3a+2}{a-4}-\dfrac{a^2+3a}{a-4}=1\)

\(\Leftrightarrow\dfrac{2-a^2}{a-4}=1\Leftrightarrow2-a^2=a-4\)

\(\Leftrightarrow a^2+a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-3\end{matrix}\right.\)

a: Thay m=1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x-y=1\\2x+y=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=5\\x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=x-1=\dfrac{5}{3}-1=\dfrac{2}{3}\end{matrix}\right.\)

b: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2}\ne-\dfrac{1}{m}\)

=>\(m^2\ne-2\)(luôn đúng)

\(\left\{{}\begin{matrix}mx-y=1\\2x+my=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-1\\2x+m\left(mx-1\right)=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-1\\x\left(m^2+2\right)=m+4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{m+4}{m^2+2}\\y=\dfrac{m\left(m+4\right)}{m^2+2}-1=\dfrac{m^2+4m-m^2-2}{m^2+2}=\dfrac{4m-2}{m^2+2}\end{matrix}\right.\)

x+y=2

=>\(\dfrac{m+4+4m-2}{m^2+2}=2\)

=>\(2m^2+4=5m+2\)

=>\(2m^2-5m+2=0\)

=>(2m-1)(m-2)=0

=>\(\left[{}\begin{matrix}2m-1=0\\m-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}m=\dfrac{1}{2}\\m=2\end{matrix}\right.\)

31 tháng 1

 

 

18 tháng 1 2023

a, Thay \(m=-1\) vào

\(=>\left\{{}\begin{matrix}-x+y=1\\2x-y=-1\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

b, Để hệ pt có nghiệm duy nhất :

\(\dfrac{m}{2}\ne\dfrac{1}{-1}\\ =>\dfrac{m}{2}\ne-1\\ =>m\ne-2\)

18 tháng 1 2023

Cảm ơn ạ

14 tháng 5 2021

`x-y=2<=>x=y+2` thay vào trên
`=>m(y+2)+2y=m+1`
`<=>y(m+2)=m+1-2m`
`<=>y(m+2)=1-2m`
Để hpt có nghiệm duy nhất
`=>m+2 ne 0<=>m ne -2`
`=>y=(1-2m)/(m+2)`
`=>x=y+2=5/(m+2)`
`xy=x+y+2`
`<=>(5-10m)/(m+2)=(6-2m)/(m+2)+2`
`<=>(5-10m)/(m+2)=10/(m+2)`
`<=>5-10m=10`
`<=>10m=-5`
`<=>m=-1/2(tm)`
Vậy `m=-1/2` thì HPT có nghiệm duy nhât `xy=x+y+2`

14 tháng 5 2021

`a)m=2`

$\begin{cases}2x+2y=3\\x-y=2\end{cases}$
`<=>` $\begin{cases}2x+2y=3\\2x-2y=4\end{cases}$
`<=>` $\begin{cases}4y=-1\\x=y+2\end{cases}$
`<=>` $\begin{cases}y=-\dfrac14\\y=\dfrac74\end{cases}$
Vậy m=2 thì `(x,y)=(7/4,-1/4)`

a: Khi m=căn 2 thì hệ sẽ là:

2x-y=căn 2+1 và x+y*căn 2=2

=>\(\left\{{}\begin{matrix}2x-y=\sqrt{2}+1\\2x+2y\sqrt{2}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y-2y\sqrt{2}=\sqrt{2}-3\\2x-y=\sqrt{2}+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-1+\sqrt{2}\\2x=\sqrt{2}+1+\sqrt{2}-1=2\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=\sqrt{2}-1\end{matrix}\right.\)

b: Để hệ có nghiệm thì 2/1<>-1/m

=>-1/m<>2

=>m<>-1/2

1 tháng 3 2021

a)

Khi m = 1, ta có:

{ x+2y=1+3   

  2x-3y=1

=> { x+2y=4

        2x-3y=1

=> { 2x+4y=8

        2x-3y=1

=> { x+2y=4

        2x-3y-2x-4y=1-8

=> { x=4-2y

       -7y = -7

=> { x = 2

        y = 1

Vậy khi m = 1 thì hệ phương trình có cặp nghệm

(x; y) = (2;1)

1 tháng 3 2021

a) Thay m=1 vào HPT ta có: 

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+4y=8\\7y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y)= (2;1)

a) Thay m=1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7y=7\\x+2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=4-2y=4-2=2\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(2;1)

b) Ta có: \(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\2\left(m+3-2y\right)-3y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\2m+6-4y-3y-m=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\-7y+m+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\-7y=-m-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\y=\dfrac{m+6}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2\cdot\dfrac{m+6}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-\dfrac{2m+12}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7m+21-2m-12}{7}=\dfrac{5m+9}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x+y=3 thì \(\dfrac{5m+9}{7}+\dfrac{m+6}{7}=3\)

\(\Leftrightarrow6m+15=21\)

\(\Leftrightarrow6m=6\)

hay m=1

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+y=3

1 tháng 3 2021

a/ Thay  \(m=1\) vào hpt ta có :

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy...

b/ Ta có :

\(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2y}\\\dfrac{2\left(m+3\right)}{2y}-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2y}\\\dfrac{m+3}{y}-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2y}\\m-3y^2+3=my\end{matrix}\right.\)