K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2022

a) xét delta phẩy ta có b'2 - ac 

<=> 4 - m 

b) để pt 1 luôn có nghiệm thì delta phẩy ≥ 0 

=> 4-m ≥ 0 => m ≤ 4

c) xét delta phẩy của pt (1) ta có 

4 - m để pt có 2 nghiệm x1,x2 thì delta phẩy ≥ 0 => m ≤ 4 

theo Vi-ét ta có:\(\left\{{}\begin{matrix}x1+x2=4\\x1x2=m\end{matrix}\right.\)

theo bài ra ta có: x12 + x22 = 12 <=> ( x1+x2 )2 - 2x1x2 = 12 

<=> 16 - 2m -12 = 0 <=> 2m = 4 <=> m = 2 ( thỏa đk)

vậy m = 2 thì pt thỏa mãn điều kiện.

d) A= x12 + x22 

<=> A = (x1+x2)2 - 2x1x2 

<=> A = 16 - 2m ta có m ≤ 4 

nên giá trị lớn nhất của m = 4 

vậy giá trị nhỏ nhất của A = 16 - 2.4 

GTNN của A = 8 dấu "=" xảy ra khi m = 4 

25 tháng 4 2022

a) Ta có: a = 1 ; b' = -2 ; c = m

⇒ △' = b'2 - ac = ( -2 )2 - 1 .m = 4 - m

b) Để phương trình luôn có nghiệm thì △' \(\ge\) 0

⇒  4 - m \(\ge\) 0  ⇔ m \(\le\) 4

Vậy khi m \(\le\) 4 thì phương trình luôn có nghiệm

c) Theo câu (b) thì phương trình luôn có nghiệm khi m \(\le\) 4

Theo hệ thức Vi - ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=4\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)

Do đó: 

\(x_1^2+x_2^2=12\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=12\)

\(\Leftrightarrow4^2-2m=12\)

\(\Leftrightarrow4=2m\Leftrightarrow m=2\)

Vậy khi m = 2 thì phương trình (1) có 2 nghiệm x1 ; x2 thỏa mãn x12 + x22 = 12 

            

 

NV
12 tháng 9 2021

b.

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}cos2x-\dfrac{1}{2}sin2x=-cosx\)

\(\Leftrightarrow cos\left(2x+\dfrac{\pi}{6}\right)=cos\left(x+\pi\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=x+\pi+k2\pi\\2x+\dfrac{\pi}{6}=-x-\pi+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{6}+k2\pi\\x=-\dfrac{7\pi}{18}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

c.

\(\Leftrightarrow2cos4x.sin3x=2sin4x.cos4x\)

\(\Leftrightarrow cos4x\left(sin4x-sin3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\sin4x=sin3x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{\pi}{2}+k\pi\\4x=3x+k2\pi\\4x=\pi-3x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\\x=k2\pi\\x=\dfrac{\pi}{7}+\dfrac{k2\pi}{7}\end{matrix}\right.\)

NV
12 tháng 9 2021

2.

\(f\left(x\right)=\dfrac{1}{2}-\dfrac{1}{2}cos2x-\dfrac{\sqrt{3}}{2}sin2x-5\)

\(=-\dfrac{9}{2}-\left(\dfrac{1}{2}cos2x+\dfrac{\sqrt{3}}{2}sin2x\right)\)

\(=-\dfrac{9}{2}-cos\left(2x-\dfrac{\pi}{3}\right)\)

Do \(-1\le-cos\left(2x-\dfrac{\pi}{3}\right)\le1\Rightarrow-\dfrac{11}{2}\le y\le-\dfrac{7}{2}\)

\(y_{min}=-\dfrac{11}{2}\) khi \(cos\left(2x-\dfrac{\pi}{3}\right)=1\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\)

\(y_{max}=-\dfrac{7}{2}\) khi \(cos\left(2x-\dfrac{\pi}{3}\right)=-1\Rightarrow x=\dfrac{2\pi}{3}+k\pi\)

10 tháng 9 2023

bài đây ạloading...  

3d:

20<x<45

x chia 4 dư 1 nên x-1 thuộc B(4)

=>\(x-1\in\left\{0;4;...;44;48\right\}\)

=>\(x\in\left\{1;5;...;45;49\right\}\)

mà 20<x<45

nên x thuộc {21;26;31;35;41}

4:

a: A={x∈N|51<=x<=127}

b: B={x∈N|100<=x<=999}

c: C={x∈N|x=7k+5; 0<=k<=8}

3 tháng 12 2021

 

Câu 4:

a, Lực hấp dẫn giữa 2 quả cầu

\(F_{hd}=G\cdot\dfrac{m_1m_2}{d^2}=6,67\cdot10^{-11}\cdot\dfrac{20\cdot45}{3^2}=6,67\cdot10^{-9}\left(N\right)\)

b,Để trọng lượng giảm đi một nửa 

Thì \(\dfrac{F_{hd}}{F_{hd}'}=\dfrac{G\cdot\dfrac{m^1m^2}{h^2}}{G\cdot\dfrac{m_1m_2}{h'^2}}=\dfrac{h'^2}{h^2}=\dfrac{F_{hd}}{\dfrac{F_{hd}}{2}}=2\Rightarrow2h^2=h'^2\Rightarrow\sqrt{2}h=h'^2\)

Vậy ...

26 tháng 10 2023

a: \(A=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)+1=x-\sqrt{x}+1\)

b:

\(\dfrac{x}{12}=\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)

\(\Leftrightarrow x\cdot\dfrac{1}{12}=\dfrac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{\sqrt{5}+3-\sqrt{5}}\)

\(\Leftrightarrow\dfrac{x}{12}=\dfrac{1}{3}\)

=>x=36

Khi x=36 thì \(A=36-6+1=37-6=31\)

c: \(B=\dfrac{2\sqrt{x}}{A}=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}\)

\(B-2=\dfrac{2\sqrt{x}-2x+2\sqrt{x}-2}{x-\sqrt{x}+1}\)

\(=\dfrac{-2x+4\sqrt{x}-2}{x-\sqrt{x}+1}=\dfrac{-2\left(x-2\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)

\(=\dfrac{-2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)

=>B<2

\(2\sqrt{x}>0;x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

=>B>0

=>0<B<2

14 tháng 10 2021

Bài 4: 

b: Xét ΔABK vuông tại A có AD là đường cao ứng với cạnh huyền BK

nên \(BD\cdot BK=BA^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BD\cdot BK=BH\cdot BC\)

14 tháng 10 2021

em cảm ơn ạ nhưng mà e cần CM câu c chứ ko phải là câu b ạ

LP
17 tháng 3 2022

nKMnO4 = 14,2/158 ≃ 0,0899 mol

2KMnO4 + 16HCl → 2KCl + 2MnCl2 + 5Cl2 + 8H2O 

0,0899                                                  \(\dfrac{0,0899\times5}{2}\)

→ nCl2 = 0,22475 mol → VCl2 = 22,4.nCl2 = 5,0344 lít

Bài 5:

a: 2x-(3-5x)=4(x+3)

=>2x-3+5x=4x+12

=>7x-3=4x+12

=>3x=15

=>x=5

b: =>5/3x-2/3+x=1+5/2-3/2x

=>25/6x=25/6

=>x=1

c: 3x-2=2x-3

=>3x-2x=-3+2

=>x=-1

d: =>2u+27=4u+27

=>u=0

e: =>5-x+6=12-8x

=>-x+11=12-8x

=>7x=1

=>x=1/7

f: =>-90+12x=-45+6x

=>12x-90=6x-45

=>6x-45=0

=>x=9/2