K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2022

a) xét delta phẩy ta có b'2 - ac 

<=> 4 - m 

b) để pt 1 luôn có nghiệm thì delta phẩy ≥ 0 

=> 4-m ≥ 0 => m ≤ 4

c) xét delta phẩy của pt (1) ta có 

4 - m để pt có 2 nghiệm x1,x2 thì delta phẩy ≥ 0 => m ≤ 4 

theo Vi-ét ta có:\(\left\{{}\begin{matrix}x1+x2=4\\x1x2=m\end{matrix}\right.\)

theo bài ra ta có: x12 + x22 = 12 <=> ( x1+x2 )2 - 2x1x2 = 12 

<=> 16 - 2m -12 = 0 <=> 2m = 4 <=> m = 2 ( thỏa đk)

vậy m = 2 thì pt thỏa mãn điều kiện.

d) A= x12 + x22 

<=> A = (x1+x2)2 - 2x1x2 

<=> A = 16 - 2m ta có m ≤ 4 

nên giá trị lớn nhất của m = 4 

vậy giá trị nhỏ nhất của A = 16 - 2.4 

GTNN của A = 8 dấu "=" xảy ra khi m = 4 

25 tháng 4 2022

a) Ta có: a = 1 ; b' = -2 ; c = m

⇒ △' = b'2 - ac = ( -2 )2 - 1 .m = 4 - m

b) Để phương trình luôn có nghiệm thì △' \(\ge\) 0

⇒  4 - m \(\ge\) 0  ⇔ m \(\le\) 4

Vậy khi m \(\le\) 4 thì phương trình luôn có nghiệm

c) Theo câu (b) thì phương trình luôn có nghiệm khi m \(\le\) 4

Theo hệ thức Vi - ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=4\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)

Do đó: 

\(x_1^2+x_2^2=12\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=12\)

\(\Leftrightarrow4^2-2m=12\)

\(\Leftrightarrow4=2m\Leftrightarrow m=2\)

Vậy khi m = 2 thì phương trình (1) có 2 nghiệm x1 ; x2 thỏa mãn x12 + x22 = 12 

            

 

26 tháng 9 2021

undefined

Còn nửa phần dưới mình quên đăng ạ

26 tháng 9 2021

a) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)

b) \(=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

c) \(=\sqrt{\left(2\sqrt{2}+3\right)^2}=2\sqrt{2}+3\)

d) \(=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)

e) \(=\sqrt{\left(4-\sqrt{6}\right)^2}=4-\sqrt{6}\)

f) \(=\sqrt{\left(3+\sqrt{7}\right)^2}=3+\sqrt{7}\)

l) \(=\sqrt{\left(\sqrt{2}-\dfrac{1}{2}\right)^2}=\sqrt{2}-\dfrac{1}{2}\)

m) \(=\sqrt{\left(2\sqrt{2}+\dfrac{1}{4}\right)^2}=2\sqrt{2}+\dfrac{1}{4}\)

AH
Akai Haruma
Giáo viên
12 tháng 7 2023

Bạn nên chịu khó gõ đề ra khả năng được giúp sẽ cao hơn.

13 tháng 7 2023

Câu h của em đây nhé

h, ( 1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1 - \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\))

\(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3-\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)

\(\dfrac{-4}{2}\)

= -2

C nguyên

=>2căn x+2+3 chia hết cho căn x+1

=>căn x+1 thuộc Ư(3)

=>căn x+1=1 hoặc căn x+1=3

=>x=4 hoặc x=0

31 tháng 5 2023

\(P=\dfrac{2\sqrt{x}+5}{\sqrt{x}+1}=\dfrac{2\sqrt{x}+2+3}{\sqrt{x}+1}=2+\dfrac{3}{\sqrt{x}+1}\)`(đk:x >=0)`

Để `P in ZZ`

`=> sqrt(x) +1 in Ư(3)={+-1;+-3}`

Mà `sqrt{x} +1 >0 AA x>=0`

`=> sqrt(x) +1 in {1;3}`

`@ sqrt{x} +1 =1 => x =0`

`@ sqrt(x) +1 =3 => x=4`

NV
16 tháng 8 2021

\(\widehat{E}=180^0-\left(\widehat{D}+\widehat{F}\right)=41^0\)

Trong tam giác vuông DEH:

\(cotE=\dfrac{EH}{DH}\Rightarrow EH=DH.cotE\)

Trong tam giác vuông DFH:

\(cotF=\dfrac{FH}{DH}\Rightarrow FH=DH.cotF\)

\(\Rightarrow EH+FH=\text{DH}.cotE+DH.cotF\)

\(\Leftrightarrow EF=DH\left(cotE+cotF\right)\)

\(\Rightarrow DH=\dfrac{EF}{cotE+cotF}=\dfrac{15}{cot41^0+cot24^0}\approx4,42\left(cm\right)\)

Trong tam giác vuông DEH

\(sinE=\dfrac{DH}{DE}\Rightarrow DE=\dfrac{DH}{sinE}=\dfrac{4,42}{sin41^0}\approx6,74\left(cm\right)\)

NV
16 tháng 8 2021

undefined

a: Xét ΔSBM và ΔSNB có 

\(\widehat{SBM}=\widehat{SNB}\)

\(\widehat{BSM}\) chung

Do đó: ΔSBM\(\sim\)ΔSNB

Suy ra: SB/SN=SM/SB

hay \(SB^2=SM\cdot SN\)

b: Xét (O) có

SA là tiếp tuyến

SB là tiếp tuyến

Do đó: SA=SB

mà OA=OB

nên SO là đường trung trực của AB

=>SO⊥AB

Xét ΔOBS vuông tại B có BH là đường cao

nên \(SH\cdot SO=SB^2=SM\cdot SN\)

9 tháng 10 2021

=\(\sqrt{2\left(12-6\sqrt{3}\right)}-\sqrt{2\left(28+10\sqrt{3}\right)}\)

=\(\sqrt{2\left(3-\sqrt{3}\right)2}-\sqrt{2\left(5+\sqrt{3}\right)^2}\)

=\(\sqrt{2}\left(3-\sqrt{3}\right)-\sqrt{2}\left(5+\sqrt{3}\right)=\sqrt{2}\left(3-\sqrt{3}-5-\sqrt{3}\right)\)

=\(\sqrt{2}\left(-2-2\sqrt{3}\right)\)=\(-2\sqrt{2}-2\sqrt{6}\)

9 tháng 10 2021

Mình cảm mơn nhaa

NV
2 tháng 11 2021

10D.

Hai đường thẳng (D) và (D') cùng đi qua điểm (0;-2) nên chúng không bao giờ song song nhau

11.A

\(x^2+2x+2=\left(x+1\right)^2+1>0;\forall x\in R\)

12.C

Hai đồ thị cắt nhau tại 1 điểm trên trục tung khi:

\(3m+2=3+2m\Rightarrow m=1\)

2 tháng 11 2021

10D.

Hai đường thẳng (D) và (D') cùng đi qua điểm (0;-2) nên chúng không bao giờ song song nhau

11.A

x2+2x+2=(x+1)2+1>0;∀x∈Rx2+2x+2=(x+1)2+1>0;∀x∈R

12.C

Hai đồ thị cắt nhau tại 1 điểm trên trục tung khi:

3m+2=3+2m⇒m=1

AH
Akai Haruma
Giáo viên
28 tháng 5 2022

Lời giải:
Để pt có 2 nghiệm pb thì $\Delta'=1-(m-1)>0\Leftrightarrow m< 2$

Áp dụng hệ thức Viet:

$x_1+x_2=2$

$x_1x_2=m-1$

Khi đó:

$x_1^2+x_2^2-3x_1x_2=2m^2+|m-3|$

$\Leftrightarrow (x_1+x_2)^2-5x_1x_2=2m^2+|m-3|$
$\Leftrightarrow 2^2-5(m-1)=2m^2+|m-3|$

$\Leftrightarrow 2m^2+5m+|m-3|-9=0$

$\Leftrightarrow 2m^2+5m+3-m-9=0$ (do $m< 2 < 3$)

$\Leftrightarrow 2m^2+4m-6=0$

$\Leftrightarrow m^2+2m-3=0$

$\Leftrightarrow (m-1)(m+3)=0$

$\Rightarrow m=1$ hoặc $m=-3$ (đều tm)