K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1

a) Từ đồ thị, ta thấy \(A\left(0;4\right),B\left(3;0\right),C\left(0;-4\right),D\left(-3;0\right)\)

b) Ta thấy O đồng thời là trung điểm của AC và II' nên AICI' là hình bình hành \(\Rightarrow\) AI' // CI hay AI' // BC (do B, I, C thẳng hàng)

 Tương tự, ta chứng minh được DI' // BC. Do đó A, I', D thẳng hàng theo tiên đề Euclide.

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Do \(ABCD\) là hình thoi nên hai đường chéo vuông góc với nhau tạo ra 4 góc vuông.

Áp dụng ĐL Pythagore vào 1 trong các tam giác vuông, ta có độ dài cạnh hình vuông là:

\(\sqrt {{{\left( {\frac{6}{2}} \right)}^2} + {{\left( {\frac{8}{2}} \right)}^2}}  = \sqrt {9 + 16}  = \sqrt {25}  = 5\) (cm)

17 tháng 5 2017

TenAnh1 TenAnh1 A = (-4.34, -5.84) A = (-4.34, -5.84) A = (-4.34, -5.84) B = (11.02, -5.84) B = (11.02, -5.84) B = (11.02, -5.84)
Hình thoi nhận O là tâm đối xứng.
\(\left|x_A\right|=\left|x_C\right|=2AC\)\(\Rightarrow\left|x_A\right|=\left|x_C\right|=8:2=4\).
Do \(\overrightarrow{OC}\)\(\overrightarrow{i}\) cùng hướng nên \(x_C=4;x_A=-4\).
A, C nằm trên trục hoành nên \(y_A=y_C=0\).
Vậy \(A\left(-4;0\right);C\left(4;0\right)\).
\(\left|y_B\right|=\left|y_D\right|=2BD\)\(\Rightarrow\left|y_B\right|=\left|y_D\right|=6:2=3\).
Do \(\overrightarrow{OB}\)\(\overrightarrow{j}\) cùng hướng nên \(y_B=3;y_D=-3\).
B, D nằm trên trục tung nên \(x_B=x_D=0\).
Vậy \(B\left(0;3\right);D\left(0;-3\right)\).
b) \(x_I=\dfrac{x_B+x_C}{2}=\dfrac{0+4}{2}=2\); \(y_I=\dfrac{y_B+y_C}{2}=\dfrac{3+0}{2}=\dfrac{3}{2}\).
Vậy \(I\left(2;\dfrac{3}{2}\right)\).
\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{-4+0+4}{3}=0\).
\(y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{0+3+0}{3}=1\).
Vậy \(G\left(0;1\right)\).
c) I' đối xứng với I qua tâm O nên \(I'\left(-2;-\dfrac{3}{2}\right)\).
d) \(\overrightarrow{AC}\left(8;0\right);\overrightarrow{BD}\left(0;-6\right);\overrightarrow{BC}\left(4;-3\right)\).

Hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O (gt)

⇒O là trung điểm của AC và BD

⇒AO=AC2 và DO=BD2

=> AO=6/2=3(cm) và DO = 8/2= 4cm

AC vuông góc BD TẠI O ( vì ABCD là hình thoi )

tam giác ADO vuông góc tại O có AD bình = AO bình + DO bình ( định lý pytago)

=> AD2 =3 bình + 4 bình = 25 => AD= 5cm 

Vậy AB=BC=DC=AD=5cm

undefined

AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Lời giải:

$\widehat{BAD}=60^0\Rightarrow \widehat{BAO}=30^0$

$\frac{BO}{AB}=\sin \widehat{BAO}=\sin 30^0=\frac{1}{2}$

$\Rightarrow BO=\frac{AB}{2}=\frac{a}{2}$

$BD=2BO=a$

$\frac{AO}{AB}=\cos \widehat{BAO}=\cos 30^0=\frac{\sqrt{3}}{2}$

$\Rightarrow AO=\frac{\sqrt{3}a}{2}$

$\Rightarrow AC=\sqrt{3}a$

$S_{ABCD}=\frac{BD.AC}{2}=\frac{\sqrt{3}a^2}{2}$

$V_{S.ABCD}=\frac{1}{3}.SO.S_{ABCD}=\frac{1}{3}.\frac{3a}{4}.\frac{\sqrt{3}a^2}{2}=\frac{\sqrt{3}a^3}{8}$

2 tháng 11 2021

127 : 127 = bao nhieu

25 tháng 2 2021

bạn tự vẽ hình nha ( mình nản vẽ hình lắm ) 

ta có AB = 6 cm 

lại có góc ABC = 60 độ 

suy ra : △ABC là △ đều  ( △cân có một góc bằng 60 độ ) 

suy ra AC bằng 6 cm suy ra AO = CO = 3 cm 

xét △ABO vuông tại O có :

theo định lý py-ta-go ta có AB2 = BO2+ AO2 

=> BO2 = 36 - 9 = 25 (cm)

=> BO = 5 cm 

=> BD = 10 cm 

vậy diện tích hình thoi là:

1/2.6.10 = 30cm2 ( điều cần tìm )

 

20 tháng 9 2017

5 tháng 10 2019

Chọn B.