K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

TenAnh1 TenAnh1 A = (-4.34, -5.84) A = (-4.34, -5.84) A = (-4.34, -5.84) B = (11.02, -5.84) B = (11.02, -5.84) B = (11.02, -5.84)
Hình thoi nhận O là tâm đối xứng.
\(\left|x_A\right|=\left|x_C\right|=2AC\)\(\Rightarrow\left|x_A\right|=\left|x_C\right|=8:2=4\).
Do \(\overrightarrow{OC}\)\(\overrightarrow{i}\) cùng hướng nên \(x_C=4;x_A=-4\).
A, C nằm trên trục hoành nên \(y_A=y_C=0\).
Vậy \(A\left(-4;0\right);C\left(4;0\right)\).
\(\left|y_B\right|=\left|y_D\right|=2BD\)\(\Rightarrow\left|y_B\right|=\left|y_D\right|=6:2=3\).
Do \(\overrightarrow{OB}\)\(\overrightarrow{j}\) cùng hướng nên \(y_B=3;y_D=-3\).
B, D nằm trên trục tung nên \(x_B=x_D=0\).
Vậy \(B\left(0;3\right);D\left(0;-3\right)\).
b) \(x_I=\dfrac{x_B+x_C}{2}=\dfrac{0+4}{2}=2\); \(y_I=\dfrac{y_B+y_C}{2}=\dfrac{3+0}{2}=\dfrac{3}{2}\).
Vậy \(I\left(2;\dfrac{3}{2}\right)\).
\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{-4+0+4}{3}=0\).
\(y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{0+3+0}{3}=1\).
Vậy \(G\left(0;1\right)\).
c) I' đối xứng với I qua tâm O nên \(I'\left(-2;-\dfrac{3}{2}\right)\).
d) \(\overrightarrow{AC}\left(8;0\right);\overrightarrow{BD}\left(0;-6\right);\overrightarrow{BC}\left(4;-3\right)\).

16 tháng 5 2017

TenAnh1 TenAnh1 A = (-4.3, -5.94) A = (-4.3, -5.94) A = (-4.3, -5.94) B = (11.06, -5.94) B = (11.06, -5.94) B = (11.06, -5.94) C = (-4.34, -5.84) C = (-4.34, -5.84) C = (-4.34, -5.84) D = (11.02, -5.84) D = (11.02, -5.84) D = (11.02, -5.84)
\(OB=OC=\dfrac{a}{2}\).
\(OA=\sqrt{BC^2-OC^2}=\sqrt{a^2-\left(\dfrac{a}{2}\right)^2}=\dfrac{a\sqrt{3}}{2}\).
Vậy \(C\left(\dfrac{a}{2};0\right);B\left(-\dfrac{a}{2};0\right);A\left(0;\dfrac{a\sqrt{3}}{2}\right)\).
b) \(x_E=\dfrac{x_A+x_C}{2}=\dfrac{a}{4}\); \(y_E=\dfrac{y_A+y_C}{2}=\dfrac{a\sqrt{3}}{4}\).
Vậy \(E\left(\dfrac{a}{4};\dfrac{a\sqrt{3}}{4}\right)\).
c)Do tam giác ABC đều cạnh a nên tâm đường tròn ngoại tiếp chính là trọng tâm tam giác ABC.
\(x_I=\dfrac{x_A+x_B+x_C}{3}=0\);
\(y_I=\dfrac{x_A+y_B+y_C}{3}=\dfrac{a\sqrt{3}}{6}\).
Vậy \(I\left(0;\dfrac{a\sqrt{3}}{6}\right)\).

16 tháng 5 2017

TenAnh1 A = (-4.3, -5.94) A = (-4.3, -5.94) A = (-4.3, -5.94) B = (11.06, -5.94) B = (11.06, -5.94) B = (11.06, -5.94)
Do các tam giác OAB, OCD, OED, OEF, OFA , OBC cùng là tam giác đều nên OA = OB = OC = OD = OE = OF = 6cm.
Do \(\overrightarrow{i}\)\(\overrightarrow{OD}\) cùng hướng nên D(6;0), A (0;-6).
Áp dụng hệ thức lượng trong tam giác vuông ta được:\(EC=2.DC.sin60^o=2.6.\dfrac{\sqrt{3}}{2}=6\sqrt{3}\).
\(\overrightarrow{EC}\) cùng hướng với \(\overrightarrow{j}\) nên:
Suy ra \(y_B=y_C=3\sqrt{3}\); \(y_E=y_F=-3\sqrt{3}\).
Do BC = 6cm và BC // OD nên \(x_E=x_C=3;x_F=x_B=-3\).
Vậy \(A\left(-6;0\right);D\left(6;0\right);B\left(-3;3\sqrt{3}\right),C\left(3;3\sqrt{3}\right)\);\(E\left(3;-3\sqrt{3}\right)\)\(F\left(-3;-3\sqrt{3}\right)\) .

19 tháng 10 2016

2

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Ta có vectơ \(\overrightarrow {OG} \) theo ba vectơ \(\overrightarrow {OA} \) , \(\overrightarrow {OB} \)và \(\overrightarrow {OC} \) là: \(\overrightarrow {OG}  = \frac{1}{3}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} } \right)\)

b) Do tọa độ ba điểm A , B và C là: \(A\left( {{x_A},{y_A}} \right),B\left( {{x_B},{y_B}} \right),C\left( {{x_C},{y_C}} \right)\) nên ta có:\(\overrightarrow {OA}  = \left( {{x_A},{y_A}} \right),\overrightarrow {OB}  = \left( {{x_B},{y_B}} \right),\overrightarrow {OC}  = \left( {{x_C},{y_C}} \right)\)

Vậy\(\overrightarrow {OG}  = \frac{1}{3}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} } \right) = \frac{1}{3}\left( {{x_A} + {x_B} + {x_C};{y_A} + {y_B} + {y_C}} \right) = \left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)\)

Tọa độ điểm G chính là tọa độ của vectơ \(\overrightarrow {OG} \) nên tọa độ G  là \(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Tọa độ của vectơ \(\overrightarrow a \) là \(\left( {2;7} \right)\)

b) Tọa độ của vectơ \(\overrightarrow b \) là \(\left( { - 1;3} \right)\)

c) Tọa độ của vectơ \(\overrightarrow c \) là \(\left( {4;0} \right)\)

d) Tọa độ của vectơ \(\overrightarrow d \) là \(\left( {0; - 9} \right)\)

24 tháng 9 2023

Tham khảo:

a) Ta có: \(\overrightarrow b  = \left( {4; - 1} \right)\) và \(\overrightarrow a  = 3.\overrightarrow i  - 2.\overrightarrow j \;\; \Rightarrow \;\overrightarrow a \;\left( {3; - 2} \right)\)

\( \Rightarrow 2\;\overrightarrow a  - \overrightarrow b  = \left( {2.3 - 4\;;\;2.\left( { - 2} \right) - \left( { - 1} \right)} \right) = \left( {2; - 3} \right)\)

Lại có: M (-3; 6), N(3; -3)

\( \Rightarrow \overrightarrow {MN}  = \left( {3 - \left( { - 3} \right); - 3 - 6} \right) = \left( {6; - 9} \right)\)

Dễ thấy:\(\left( {6; - 9} \right) = 3.\left( {2; - 3} \right)\) \( \Rightarrow \overrightarrow {MN}  = 3\left( {2\;\overrightarrow a  - \overrightarrow b } \right)\)

b) Ta có: \(\overrightarrow {OM}  = \left( { - 3;6} \right)\) ( do M(-3; 6)) và \(\overrightarrow {ON}  = \left( {3; - 3} \right)\) (do N (3; -3)).

Hai vectơ này không cùng phương (vì \(\frac{{ - 3}}{3} \ne \frac{6}{{ - 3}}\)).

Do đó các điểm O, M, N không cùng nằm trên một đường thẳng.

Vậy chúng không thẳng hàng.

c) Các điểm O, M, N không thẳng hàng nên OMNP là một hình hành khi và chỉ khi \(\overrightarrow {OM}  = \overrightarrow {PN} \).

Do \(\overrightarrow {OM}  = \left( { - 3;6} \right),\;\overrightarrow {PN}  = \left( {3 - x; - 3 - y} \right)\)  nên

\(\overrightarrow {OM}  = \overrightarrow {PN}  \Leftrightarrow \left\{ \begin{array}{l} - 3 = 3 - x\\6 =  - 3 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y =  - 9\end{array} \right.\)

Vậy điểm cần tìm là P (6; -9).

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Vì \(\overrightarrow a  = 3\overrightarrow i \)nên \(\overrightarrow a  = \left( {3;0} \right)\)

b) Vì \(\overrightarrow b  =  - \overrightarrow j \)nên \(\overrightarrow b  = \left( {0; - 1} \right)\)

c) Vì \(\overrightarrow c  = \overrightarrow i  - 4\overrightarrow j \)nên \(\overrightarrow c  = \left( {1; - 4} \right)\)

d) Vì \(\overrightarrow d  = 0,5\overrightarrow i  + \sqrt 6 \overrightarrow j \)nên \(\overrightarrow d  = \left( {0,5;\sqrt 6 } \right)\)