150 x 1+150 x 2+150 x 3+....+150 x 99+150 x 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\frac{1}{2}\) => \(B\left(x\right)=B\left(\frac{1}{2}\right)=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{100}\)
\(x\times B\left(x\right)=x+x^2+x^3+x^4+...+x^{100}+x^{101}\)
\(\frac{1}{2}\times B\left(\frac{1}{2}\right)=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{100}+\left(\frac{1}{2}\right)^{101}\)
\(B\left(\frac{1}{2}\right)-\frac{1}{2}\times B\left(\frac{1}{2}\right)=\frac{1}{2}\times B\left(\frac{1}{2}\right)=1-\left(\frac{1}{2}\right)^{101}\)
\(B\left(x\right)=\frac{1}{2}B\left(x\right)\times2=\left(1-\left(\frac{1}{2}\right)^{101}\right)\times2=2-\left(\frac{1}{2}\right)^{100}\)
Thay \(x=\frac{1}{2}\) vào đa thức B(x) ta có :
\(B\left(\frac{1}{2}\right)=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+.....+\left(\frac{1}{2}\right)^{100}\)
\(\Leftrightarrow2B\left(\frac{1}{2}\right)=2\left(1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+.....+\left(\frac{1}{2}\right)^{100}\right)\)
\(\Leftrightarrow2B\left(\frac{1}{2}\right)=2+1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+......+\left(\frac{1}{2}\right)^{99}\)
Ta có :
\(2B\left(\frac{1}{2}\right)-B\left(\frac{1}{2}\right)=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow B\left(\frac{1}{2}\right)=2-\frac{1}{2^{100}}\)
Vậy tại \(x=\frac{1}{2}\) thì đa thức \(B\left(x\right)\) có giá trị là \(2-\frac{1}{2^{100}}\)
\(\Leftrightarrow\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=0\)
\(\Leftrightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{97}+\frac{1}{98}+\frac{1}{99}\right)=0\)
\(\Leftrightarrow x+100=0\text{ (do }\frac{1}{97}+\frac{1}{98}+\frac{1}{99}\ne0\text{)}\)
\(\Leftrightarrow x=-100\)
bn tự chép đề lại nha
từ đề bài suy ra \(1+\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+3=1+1+1+0=3\)
suy ra \(\frac{x+1+99}{99}+\frac{x+2+98}{98}+\frac{x+3+97}{97}+3=3\)
suy ra \(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=3-3=0\)
suy ra \(\left(x+100\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\right)=0\)
mà 1/99 +1/98+1/97 lớn hơn 0
từ 2 điều trên suy ra x+100=0 suy ra x=-100
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}\)=\(-4\)
<=>\(\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)+\left(\frac{x+4}{96}+1\right)=0\)=>\(\frac{x+1+99}{99}+\frac{x+2+98}{98}+\frac{x+3+97}{97}+\frac{x+4+96}{96}=0\)
=>\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)
=>\(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
Vì: \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\)
=>\(x+100=0\)
\(x=0-100\)
\(x=-100\)
Vậy \(x=-100\)
Ta có 51/2.52/2...100/2
= 1.2.3....100/1.2...50.2.2...2 (nhân cả tử và mẫu với 1.2.3...50)
= 1.2.3...100/(1.2)(2.2)(3.2)...(50.2)
= 1.2.3...100/2.4.6...100
= 1.3.5...99 => đpcm nhớ giữ lời hứa đấy
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{3.4.5...100}{2.3.4...99}=\frac{100}{2}=50\)
b:
3/2 x 4/3 x 5/4 x ......... x 8/7 x 9/8
Ta loai bo so giong nhau o TS va MS
Ta duoc 9/2
150 x 1 + 150 x 2 + 150 x 3 +...+ 150 x 99 + 150 x 100
= 150 x ( 1 + 2 + 3 + ... + 99 + 100 )
= 150 x 5050 = 757500
B = 150 x 1 + 150 x 2 + 150 x 3 + ... + 150 x 99 + 150 x 100
B = 150 x (1 + 2 + 3+... + 99 + 100)
Đặt: A = 1 + 2 + 3 +...+ 100
Dãy số trên là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là:
(100 - 1) : 1 + 1 = 100 (số hạng)
A = (100 + 1) x 100 : 2 = 5050
B = 150 x 5050
B = 757500