Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(x=\frac{1}{2}\) vào đa thức B(x) ta có :
\(B\left(\frac{1}{2}\right)=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+.....+\left(\frac{1}{2}\right)^{100}\)
\(\Leftrightarrow2B\left(\frac{1}{2}\right)=2\left(1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+.....+\left(\frac{1}{2}\right)^{100}\right)\)
\(\Leftrightarrow2B\left(\frac{1}{2}\right)=2+1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+......+\left(\frac{1}{2}\right)^{99}\)
Ta có :
\(2B\left(\frac{1}{2}\right)-B\left(\frac{1}{2}\right)=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow B\left(\frac{1}{2}\right)=2-\frac{1}{2^{100}}\)
Vậy tại \(x=\frac{1}{2}\) thì đa thức \(B\left(x\right)\) có giá trị là \(2-\frac{1}{2^{100}}\)
a) Thay x=-1 vào A(x), ta được:
\(A\left(-1\right)=-1+\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4+...+\left(-1\right)^{99}+\left(-1\right)^{100}\)
\(=-1+1-1+1+...+\left(-1\right)+1\)
=0
Vậy: x=-1 là nghiệm của đa thức A(x)
Thay x=-1 vào A(x), ta được:
A(−1)=−1+(−1)2+(−1)3+(−1)4+...+(−1)99+(−1)100A(−1)=−1+(−1)2+(−1)3+(−1)4+...+(−1)99+(−1)100
=−1+1−1+1+...+(−1)+1=−1+1−1+1+...+(−1)+1
=0
Vậy: x=-1 là nghiệm của đa thức A(x)
Khi x=1 thì
B(1)=1+2+...+100=5050
Khi x=-1 thì
B(-1)=-1+2-3+4-5+6-...-99+100
=1+1+...+1
=50
đề bài ra sai rùi hay sao ý bn: tại x +1/2 tính kiểu j???
\(x=\frac{1}{2}\) => \(B\left(x\right)=B\left(\frac{1}{2}\right)=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{100}\)
\(x\times B\left(x\right)=x+x^2+x^3+x^4+...+x^{100}+x^{101}\)
\(\frac{1}{2}\times B\left(\frac{1}{2}\right)=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{100}+\left(\frac{1}{2}\right)^{101}\)
\(B\left(\frac{1}{2}\right)-\frac{1}{2}\times B\left(\frac{1}{2}\right)=\frac{1}{2}\times B\left(\frac{1}{2}\right)=1-\left(\frac{1}{2}\right)^{101}\)
\(B\left(x\right)=\frac{1}{2}B\left(x\right)\times2=\left(1-\left(\frac{1}{2}\right)^{101}\right)\times2=2-\left(\frac{1}{2}\right)^{100}\)