B1:CMR
( n+2 ) x ( n-7 ) chia hết cho 2
A=10^8+17 chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(n + 2)(n - 7)
Xét n lẻ , có :
(lẻ + 2).(lẻ - 7) <=> lẻ.chẵn
=> (n + 2)(n - 7) \(⋮\) 2 (1)
Xét n chẵn , có :
(chẵn + 2).(chẵn - 7) <=> chẵn.lẻ
=> (n + 2)(n - 7) \(⋮\) 2 (2)
Từ (1) và (2)
=> Với mọi n thuộc Z , (n + 2)(n - 7) chia hết cho 2
A = 108 + 17
A = 10................................0 + 17
A = 10...................17
Tổng các chữ số : 1 + 0 + 0 + ............ + 1 + 7 = 9
=> Chia hết cho 9
Bài 1 :
a)
Chứng minh chiều \("\Rightarrow"\) :
Ta có : \(abcd⋮99\Rightarrow ab.100+cd⋮99\)
\(\Rightarrow99ab+ab+cd⋮99\)
Mà : \(99ab⋮99\Rightarrow ab+cd⋮99\) ( đpcm )
Chứng minh chiều \("\Leftarrow"\) :
Ta có : \(ab+cd⋮99\)
\(\Rightarrow99ab+ab+cd⋮99\)
\(\Rightarrow100ab+cd⋮99\)
hay : \(abcd⋮99\) ( đpcm )
b) Ta có :
\(abcd=1000a+100b+10c+d\)
\(=100ab+cd\)
\(=200cd+cd=201cd\)
Mà \(201⋮67\Rightarrow ab=2cd⋮67\) ( đpcm )
c) Gọi số tự nhiên ba chữ số đó là \(aaa\)
Ta có : \(aaa=a.111=a.37.3⋮37\)
\(\Rightarrow\) Mọi số tự nhiên có 3 chữ số giống nhau đều chia hết cho 37 ( đpcm )
a)
\(7^6+7^5-7^4\)
\(=7^4\cdot\left(7^2+7-1\right)\)
\(=7^4\cdot55⋮55\left(đpcm\right)\)
Mấy câu kia tương tự, dài quá
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
Bài 1:
a: \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\cdot55⋮11\)
b: \(10^9+10^8+10^7\)
\(=10^7\left(10^2+10+1\right)=10^7\cdot111⋮111\)
( n + 2) x ( n - 7 )
Nếu n là chẵn thì n + 2 là chẵn nên ( n + 2 )(n-7) chia hết cho 2
Nếu n là lẻ thì n - 7 là chẵn,bài toán được giải quyết
a = 108 +17
108 = 10...00 ( 9 chữ số 8 )
Vậy tổng các chữ số của 108 + 1 + 7 = 1 + 7 + 1 = 9 chia hết cho 9 ( đpcm)