K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

\(\frac{\left(2+\sqrt{3}\right)^n-\left(2-\sqrt{3}\right)^n}{2\sqrt{3}}=\frac{A+B\sqrt{3}-A+B\sqrt{3}}{2\sqrt{3}}=B\)( A,B thuộc Z )

đề thấy hơi chán,từ số kia =2an,mẫu số cx chia hết cho 2 thì sao tối giản đc hả bạn ơi

24 tháng 4 2017

Nhận xét về dãy số. Ta thấy rằng dã số này thì có 2 tính chất cần chú ý.

Thứ 1: Số hạng thứ n là tổng của n số lẻ liên tiếp.

Thứ 2: Số bé nhất trong n số của số hạng n sẽ có dạng: \(2k+1\)(với k là tổng số chữ số của (n - 1) số hạn trước đó:

(Ví dụ: Số hạng thứ 5 trong dãy sẽ có \(k=1+2+3+4=10\)sợ you không hiểu chỗ này nên cho ví dụ đấy)

Giờ ta chứng minh với n bất kỳ thì dãy này luôn đúng yêu cầu bài toán:

Xét số thứ n trong dãy:

Ta có \(k=1+2+...+\left(n-1\right)=\frac{n\left(n-1\right)}{2}\)

Số hạng thứ n của dãy sẽ là: \(\left(2k+1\right)+\left(2k+3\right)+...+\left(2k+1+2\left(n-1\right)\right)\)

\(=2kn+\left(1+3+...+\left(2n-1\right)\right)\)

\(=2kn+n^2\)

\(=2.\frac{n\left(n-1\right)}{2}.n+n^2=n^2\left(n-1+1\right)=n^3\)

Vậy bài toán đã được chứng minh.

NV
10 tháng 7 2021

Hai số hạng liên tiếp của dãy có dạng:

\(\dfrac{\left(n-1\right)n}{2}\) và \(\dfrac{n\left(n+1\right)}{2}\) với \(n\ge2\)

Tổng của 2 số hạng liên tiếp:

\(\dfrac{\left(n-1\right)n}{2}+\dfrac{n\left(n+1\right)}{2}=\dfrac{n}{2}\left(n-1+n+1\right)=n^2\) là 1 SCP (đpcm)

23 tháng 8 2019

hello quân Phú đây

\(1=1^3\)

\(3+5=8=2^3\)

\(7+9+11=27=3^3\)

\(13+15+17+19=64=4^3\)

\(21+23+25+27+29=125=5^3\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{2 \times {5^n}}}{{2 \times {5^{n - 1}}}} = \frac{{2 \times {5^n}}}{{2 \times {5^{n}.5^{- 1}}}} = 5,\;\forall n \ge 2\).

Vậy dãy số \(\left( {{u_n}} \right)\) là một cấp số nhân với \({u_1} = 10\) và công bội \(q = 5\).