so sánh các số sau
225 mũ 7 và 125 mũ 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6255 và 1257
a, 6255 = (54)5 = 520
1257 = (53)7 = 521
Vì 520 < 521 nên 6255 < 1257
b, 32n = (32)n = 9n
23n = (23)n = 8n
9n > 8n ( nếu n > 0)
9n = 8n (nếu n = 0)
Vậy nếu n = 0 thì 23n = 32n
nếu n > 0 thì 32n > 23n
a. \(625^5=\left(5^4\right)^5=5^{20}< 5^{21}=\left(5^3\right)^7=125^7\)
b. với n khác 0 \(3^{2n}=9^n>8^n=2^{3n}\)
Còn với n=0 thì \(3^{2n}=2^{3n}=1\)
a.ta có: \(3^{2009}\)
\(9^{1005}\)= \(\left(3^2\right)^{1005}\) =\(3^{2010}\)
*Vì 2010> 2009 =>\(3^{2009}\) < \(3^{2010}\)
Vậy \(3^{2009}\) < \(9^{1005}\).
2225 = (23)75 = 875
3151 > 3150 = (32)75 = 975
=> 3151 > 975 > 875
=> 3151 > 2225
4n - 5 chia hết cho 2n - 1
=> 4n - 2 - 3 chia hết cho 2n - 1
=> 2.(2n - 1) - 3 chia hết cho 2n - 1
Do 2.(2n - 1) chia hết cho 2n - 1 => 3 chia hết cho 2n - 1
Mà n thuộc N => 2n - 1 > hoặc = -1
=> 2n - 1 thuộc {-1 ; 1 ; 3}
=> 2n thuộc {0 ; 2 ; 4}
=> n thuộc {0 ; 1 ; 2}
625^5=(5^4)^5=5^20
125^7=(5^3)^7=5^21
mà 5^20<5^21 =>625^5<125^7
\(9^{100}và3^{200}=3^{200}và3^{200}\\ \Rightarrow3^{200}=3^{200}\\ \Rightarrow9^{100}=3^{200}.\\ 5^{23}và125^3=5^{23}và5^9\\ \Rightarrow5^{23}>5^9\\ \Rightarrow5^{23}>5^3.\)
9¹⁰⁰ = (3²)¹⁰⁰ = 3²⁰⁰
Vậy 9¹⁰⁰ = 3²⁰⁰
------------
125³ = (5³)³ = 5⁹
Do 23 > 9 nên 5²³ > 5⁹
Vậy 5²³ > 125³
a, Ta có:\(8^{10}=\left(2^3\right)^{10}=2^{30}\)
\(1024^3=\left(2^{10}\right)^3=2^{30}\)
Vậy \(8^{10}=1024^3\)
b, Dựa theo ý a nhưng cơ số là 5\(\Rightarrow25^7>125^3\)
c, Ta có: \(49^{10}\)giữ nguyên
\(625^5=\left(25^2\right)^5=25^{10}\)