Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(625^5=\left(5^4\right)^5=5^{20}< 5^{21}=\left(5^3\right)^7=125^7\)
b. với n khác 0 \(3^{2n}=9^n>8^n=2^{3n}\)
Còn với n=0 thì \(3^{2n}=2^{3n}=1\)
2225 = (23)75 = 875
3151 > 3150 = (32)75 = 975
=> 3151 > 975 > 875
=> 3151 > 2225
4n - 5 chia hết cho 2n - 1
=> 4n - 2 - 3 chia hết cho 2n - 1
=> 2.(2n - 1) - 3 chia hết cho 2n - 1
Do 2.(2n - 1) chia hết cho 2n - 1 => 3 chia hết cho 2n - 1
Mà n thuộc N => 2n - 1 > hoặc = -1
=> 2n - 1 thuộc {-1 ; 1 ; 3}
=> 2n thuộc {0 ; 2 ; 4}
=> n thuộc {0 ; 1 ; 2}
625^5=(5^4)^5=5^20
125^7=(5^3)^7=5^21
mà 5^20<5^21 =>625^5<125^7
a, Ta có:\(8^{10}=\left(2^3\right)^{10}=2^{30}\)
\(1024^3=\left(2^{10}\right)^3=2^{30}\)
Vậy \(8^{10}=1024^3\)
b, Dựa theo ý a nhưng cơ số là 5\(\Rightarrow25^7>125^3\)
c, Ta có: \(49^{10}\)giữ nguyên
\(625^5=\left(25^2\right)^5=25^{10}\)
Ta có:
\(31^7< 32^7=\left(2^5\right)^7=2^{35}\)
\(17^9>16^9=\left(2^4\right)^9=2^{36}\)
mà \(2^{36}>2^{35}\Rightarrow17^9>31^7\).
a)nếu 200910+9=200919
vậy 200919>201010suy ra A>B
nếu 36:32=4 và 47:43 =47-3=44
vậy 4<44 suy ra A<B
chúc bn
hok tốt