K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2023

Ta thấy N+4>N+1

Nếu N+1 là số nguyên tố >3 => N+1 là số lẻ => N+4 là số chẵn => N+4 không phải là số nguyên tố

=> N+1<3 => N+1=2 => N=1

22 tháng 9 2023

giúp mik đi 

xin đấy

25 tháng 9 2023

app như cc

hỏi ko ai trả lời

9 tháng 3 2017

\(\hept{\begin{cases}a=2^n-1\\b=2^n\\c=2^n+1\end{cases}}\)=> a,b,c: Là ba số tự nhiên liên tiếp

Vậy: với n=0=> a=0; loại

n=1=> a=1 loại

n=2=>a=3;b=4;c=5 nhận.

với n>2 : Trong 3 số tn liên tiếp có  : 1 số chia hết cho 3 ;  vậy 2^n phải chia hết cho 3 điều này không xẩy ra

Vậy: n=2 là duy nhất

20 tháng 9 2023

Olm sẽ hướng dẫn em giải những dạng toán nâng cao như này bằng phương pháp đánh giá em nhé.

Nếu n = 2 ta có: 2 + 2 = 4 ( loại)

Nếu n = 3 ta có:  2n + 27 = 2.3 + 27 = 33  (loại)

Nếu n > 3 thì vì   n là số nguyên tố nên n có dạng:

                           n = 3k + 1 hoặc n = 3k + 2

Với n = 3k + 1 ta có: n + 2 = 3k + 1 + 2 = 3k + 3 ⋮ 3 (loại)

Với n = 3k + 2 ta có: n + 10 = 3k + 2 + 10 = 3k + 12 =3.(k+4)⋮3 (loại)

Không có số tự nhiên nào thỏa mãn n+2; n+10; 2n+27 đồng thời là số nguyên tố.

Kết luận: n \(\in\) \(\varnothing\) 

 

 

13 tháng 11 2015

n=2 

tick cho mik nha

9 tháng 3 2017

N=1!!!

10 tháng 3 2017

sai bet te le nhe

31 tháng 3 2020

Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)

Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)

Với \(x\ge2\) ta có:

\(n^5+n^4+1\)

\(=n^5-n^2+n^4-n+n^2+n+1\)

\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)

Vậy \(n=1\)

31 tháng 3 2020

Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT

Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT

Với \(n\ge2\) ta có:

\(A=n^8+n+1\)

\(=\left(n^8-n^2\right)+n^2+n+1\)

\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)

\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)

\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)

\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)

Vậy \(n=1\)