Tìm x, để
\(N=\frac{\left(x-3\right).\left(2.x+5\right)}{7.x}\) nhận giá trị âm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(A=\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)....\left(\frac{1}{2008}-1\right).\left(\frac{1}{2009}-1\right)=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)...\left(-\frac{2008}{2009}\right)=\frac{1.2.3...2008}{2.3.4....2009}=\frac{1}{2009}\)
2)\(A=\frac{x-7}{2}\)
Do 2>0 =>A>0 <=>x-7>0<=>x>7
Vậy x>7 thì A>0
3)\(A=\frac{x+3}{x-5}\)
Do x+3>x-5 =>A<0<=>x+3>0 và x-5<0
<=>-3<x<5
Vậy -3<x<5 thì A<0
\(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right):\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)
\(< =>B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\frac{x.x}{x\left(x-2\right)}\right)\)
\(< =>B=\left(\frac{x-4+2x}{x\left(x-2\right)}\right):\left(\frac{x^2-4}{x\left(x-2\right)}+\frac{x^2}{x\left(x-2\right)}\right)\)
\(< =>B=\frac{3x-4}{x\left(x-2\right)}:\frac{x^2-4+x^2}{x\left(x-2\right)}\)
\(< =>B=\frac{3x-4}{x\left(x-2\right)}.\frac{x\left(x-2\right)}{2x^2-4}\)
\(< =>B=\frac{3x-4}{2x^2-4}\)
\(b,\)Với \(x=-2\)thì
\(B=\frac{3\left(-2\right)-4}{2\left(-2\right)^2-4}=\frac{-6-4}{8-4}=-\frac{10}{4}=-\frac{5}{2}\)
\(ĐKXĐ:x\ne2;x\ne0\)
a
\(B=\left[\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right]:\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)
\(=\frac{x-4+2x}{x\left(x-2\right)}:\frac{\left(x+2\right)\left(x-2\right)-x^2}{x\left(x-2\right)}\)
\(=\frac{3x-4}{x^2-4-x^2}=-\frac{3x-4}{4}\)
b
\(B=-\frac{3x-4}{4}=-\frac{3\cdot\left(-2\right)-4}{4}=\frac{5}{2}\)
c
\(\left|B\right|-2x=5\Leftrightarrow\left|B\right|=5+2x\)
\(B=-\frac{3x-4}{4}\Leftrightarrow-\frac{3x-4}{4}\ge0\Leftrightarrow x\le\frac{4}{3}\)
\(B=\frac{3x-4}{4}\Leftrightarrow x>\frac{4}{3}\)
Xét các trường hợp của x thì ra nghiệm bạn nhé
d
\(\left(2-x\right)B=-\frac{\left(2-x\right)\left(3x-4\right)}{4}\)
Để ( 2 - x ).B đạt giá trị nhỏ nhất thì ( 2 - x ) ( 3x - 4 ) đạt giá trị lớn nhất
Casio sẽ giúp chúng ta phần này
e
Để B là số nguyên âm lớn nhất hay \(B=-1\Leftrightarrow-\frac{3x-4}{4}=-1\Leftrightarrow x=\frac{8}{3}\)
g
\(\left|B\right|+3< 2x-1\)
Làm hệt như câu c nhé :D
a) \(H=\left(\frac{x}{x+2}-\frac{x^3-8}{x^3+8}.\frac{x^2-2x+4}{x^2-4}\right).\frac{x+3}{x+2}\)
\(=\left(\frac{x}{x+2}-\frac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\frac{x^2-2x+4}{\left(x+2\right)\left(x-2\right)}\right).\frac{x+3}{x+2}\)
\(=\left(\frac{x^2+2x}{\left(x+2\right)^2}-\frac{\left(x^2+2x+4\right)}{\left(x+2\right)^2}\right).\frac{x+3}{x+2}\)
\(=\frac{-4}{\left(x+2\right)^2}.\frac{x+3}{x+2}=\frac{-4x-12}{\left(x+2\right)^3}\)
Trước tiên ta đi rút gọn biểu thức trên :
Đặt \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
ĐKXĐ : \(x\ne\pm2,x\ne0\)
Ta có : \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(=\left(\frac{x^2}{x\left(x^2-4\right)}+\frac{6}{3\left(2-x\right)}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\right)\)
\(=\left(\frac{x\cdot3-6\cdot\left(x+2\right)+3\cdot\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x^2-4+10-x^2}{x+2}\right)\)
\(=\frac{-18}{3\left(x-2\right)\left(x+2\right)}:\left(-\frac{6}{x+2}\right)\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{\left(-6\right)}=\frac{1}{x-2}\)
Để \(A\) nhận giá trị nguyên
\(\Leftrightarrow\frac{1}{x-2}\inℤ\) \(\Leftrightarrow1⋮x-2\) \(\Leftrightarrow x-2\inƯ\left(1\right)\)
\(\Leftrightarrow x-2\in\left\{-1,1\right\}\)
\(\Leftrightarrow x\in\left\{1,3\right\}\) ( Thỏa mãn ĐKXĐ )
Vậy : \(x\in\left\{1,3\right\}\) thì A nhận giá trị nguyên.
\(N=\frac{\left(x-3\right)\left(2x+5\right)}{7x}< 0\)
Th1 : Tử âm mẫu dương
\(\Rightarrow\hept{\begin{cases}\left(x-3\right)\left(2x+5\right)< 0\\7x>0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-3\right)\left(2x+5\right)< 0\\x>0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x-3< 0\\x>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>0\end{cases}}}\)
Th2 : Tử dương mẫu âm
\(\Rightarrow\hept{\begin{cases}\left(x-3\right)\left(2x+5\right)>0\\7x< 0\end{cases}\Rightarrow x< 0}\)