K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(N=\frac{\left(x-3\right)\left(2x+5\right)}{7x}< 0\)

Th1 : Tử âm mẫu dương 

\(\Rightarrow\hept{\begin{cases}\left(x-3\right)\left(2x+5\right)< 0\\7x>0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-3\right)\left(2x+5\right)< 0\\x>0\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x-3< 0\\x>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>0\end{cases}}}\)

Th2 : Tử dương mẫu âm

\(\Rightarrow\hept{\begin{cases}\left(x-3\right)\left(2x+5\right)>0\\7x< 0\end{cases}\Rightarrow x< 0}\)

24 tháng 6 2015

1)\(A=\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)....\left(\frac{1}{2008}-1\right).\left(\frac{1}{2009}-1\right)=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)...\left(-\frac{2008}{2009}\right)=\frac{1.2.3...2008}{2.3.4....2009}=\frac{1}{2009}\)

2)\(A=\frac{x-7}{2}\)

Do 2>0 =>A>0 <=>x-7>0<=>x>7

Vậy x>7 thì A>0

3)\(A=\frac{x+3}{x-5}\)

Do x+3>x-5 =>A<0<=>x+3>0 và x-5<0

<=>-3<x<5

Vậy -3<x<5 thì A<0

2 tháng 8 2020

\(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right):\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)

\(< =>B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\frac{x.x}{x\left(x-2\right)}\right)\)

\(< =>B=\left(\frac{x-4+2x}{x\left(x-2\right)}\right):\left(\frac{x^2-4}{x\left(x-2\right)}+\frac{x^2}{x\left(x-2\right)}\right)\)

\(< =>B=\frac{3x-4}{x\left(x-2\right)}:\frac{x^2-4+x^2}{x\left(x-2\right)}\)

\(< =>B=\frac{3x-4}{x\left(x-2\right)}.\frac{x\left(x-2\right)}{2x^2-4}\)

\(< =>B=\frac{3x-4}{2x^2-4}\)

\(b,\)Với \(x=-2\)thì

 \(B=\frac{3\left(-2\right)-4}{2\left(-2\right)^2-4}=\frac{-6-4}{8-4}=-\frac{10}{4}=-\frac{5}{2}\)

2 tháng 8 2020

\(ĐKXĐ:x\ne2;x\ne0\)

a

\(B=\left[\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right]:\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)

\(=\frac{x-4+2x}{x\left(x-2\right)}:\frac{\left(x+2\right)\left(x-2\right)-x^2}{x\left(x-2\right)}\)

\(=\frac{3x-4}{x^2-4-x^2}=-\frac{3x-4}{4}\)

b

\(B=-\frac{3x-4}{4}=-\frac{3\cdot\left(-2\right)-4}{4}=\frac{5}{2}\)

c

\(\left|B\right|-2x=5\Leftrightarrow\left|B\right|=5+2x\)

\(B=-\frac{3x-4}{4}\Leftrightarrow-\frac{3x-4}{4}\ge0\Leftrightarrow x\le\frac{4}{3}\)

\(B=\frac{3x-4}{4}\Leftrightarrow x>\frac{4}{3}\)

Xét các trường hợp của x thì ra nghiệm bạn nhé

d

\(\left(2-x\right)B=-\frac{\left(2-x\right)\left(3x-4\right)}{4}\)

Để ( 2 - x ).B đạt giá trị nhỏ nhất thì ( 2 - x ) ( 3x - 4 ) đạt giá trị lớn nhất

Casio sẽ giúp chúng ta phần này

e

Để B là số nguyên âm lớn nhất hay \(B=-1\Leftrightarrow-\frac{3x-4}{4}=-1\Leftrightarrow x=\frac{8}{3}\)

g

\(\left|B\right|+3< 2x-1\)

Làm hệt như câu c nhé :D 

24 tháng 1 2020

a) \(H=\left(\frac{x}{x+2}-\frac{x^3-8}{x^3+8}.\frac{x^2-2x+4}{x^2-4}\right).\frac{x+3}{x+2}\)

\(=\left(\frac{x}{x+2}-\frac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\frac{x^2-2x+4}{\left(x+2\right)\left(x-2\right)}\right).\frac{x+3}{x+2}\)

\(=\left(\frac{x^2+2x}{\left(x+2\right)^2}-\frac{\left(x^2+2x+4\right)}{\left(x+2\right)^2}\right).\frac{x+3}{x+2}\)

\(=\frac{-4}{\left(x+2\right)^2}.\frac{x+3}{x+2}=\frac{-4x-12}{\left(x+2\right)^3}\)

25 tháng 2 2020

Trước tiên ta đi rút gọn biểu thức trên :

Đặt \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

ĐKXĐ : \(x\ne\pm2,x\ne0\)

Ta có : \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(=\left(\frac{x^2}{x\left(x^2-4\right)}+\frac{6}{3\left(2-x\right)}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\right)\)

\(=\left(\frac{x\cdot3-6\cdot\left(x+2\right)+3\cdot\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x^2-4+10-x^2}{x+2}\right)\)

\(=\frac{-18}{3\left(x-2\right)\left(x+2\right)}:\left(-\frac{6}{x+2}\right)\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{\left(-6\right)}=\frac{1}{x-2}\)

Để \(A\) nhận giá trị nguyên 

\(\Leftrightarrow\frac{1}{x-2}\inℤ\) \(\Leftrightarrow1⋮x-2\) \(\Leftrightarrow x-2\inƯ\left(1\right)\)

\(\Leftrightarrow x-2\in\left\{-1,1\right\}\)

\(\Leftrightarrow x\in\left\{1,3\right\}\)  ( Thỏa mãn ĐKXĐ )

Vậy : \(x\in\left\{1,3\right\}\) thì A nhận giá trị nguyên.