K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

A = 776 + 775 + 774
   = 774(72 + 7 + 1)
   = 774(49 + 7 + 1)
   = 774 . 57

Vậy A chia hết cho 57

27 tháng 6 2017

\(A=7^{76}+7^{75}+7^{74}=7^{74}\cdot7^2+7^{74}\cdot7+7^{74}=7^{74}\left(7^2+7+1\right)=57\cdot7^{74}⋮57\)

23 tháng 4 2017

muon 1ab5c chia het cho 775 thi 1ab5c phai chia het cho 31 va 25

muon 1ab5c chia het cho 25 thi 5c phai chia het cho 25 nen c=0

Vi 1ab50 chia het cho 31 nen a=0:b=8:c=0

a=3:b=9:c=0

a=7:b=0:c=0

2 tháng 11 2017

A) Các số chia hết cho 2 và 5 là :

660 ; 3000 ; 800

B) cả số chia hết cho5 nhưng không chia hết cho 2 là :

35 ; 945.

C) các số chia hết cho 2 mà ko chia hết cho 5 là :

8.

k nha ! Giữ lời hứa .

2 tháng 11 2017

A) 660 ; 3000 ; 800

B) 35 ; 945

C) 8 

Chúc bạn học tốt!

18 tháng 11 2015

a) n+2 \(\in\)B(3)={0;3;6;9;12;15;18;21;...}

\(\Rightarrow\)n=1;4;7;10;13;16;19;....

b) 4n-5 \(\in\)B(13)={0;13;26;39;42;.....}

\(\Rightarrow\)n=5;18;31;44;47;...

c) 5n-1 \(\in\)B(7)={0;7;14;21;28;35;42;...}

\(\Rightarrow\)n=3

d) 25n+3 \(\in\)B(57)={0;57;114;171;228;285...}

\(\Rightarrow\)n=9

1 tháng 8 2017

Xem lại đề bài vì Ví dụ với a=2 và b=1 => 2a+3b=2.2+3.1=7 chia hết cho 7

Nhưng a+4b=2+4.1=6 không chia hết cho 7

14 tháng 9 2018

a2 - a = a ( a - 1 )

mà a và a-1 là 2 số liên tiếp

=> 1 trong 2 số là số chẵn

=> a ( a - 1 ) chia hết cho 2 hay a2 - a chia hết cho 2

14 tháng 9 2018

Ta có : \(a^2-a=a\left(a-1\right)\)

Vì \(a\left(a-1\right)\)là tích 2 số nguyên liên tiếp nên

\(a\left(a-1\right)⋮2\)

\(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)

Vì \(a\left(a-1\right)\left(a+1\right)\)là tích 3 số nguyên liên tiếp nên :

\(a\left(a-1\right)\left(a+1\right)⋮3\)

\(a^5-a=a\left(a^4-1\right)\)

\(=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(+5\left(a-1\right)a\left(a+1\right)\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)là tích 5 số nguyên liên tiếp

\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)

\(\Rightarrow a^5-a⋮5\)