Chứng minh rằng:
a) (102023 + 8) ⋮ 9 b) (1019 + 1018 + 1017) ⋮ 555
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 10\(^9\)+10\(^8\)+10\(^7\)
= 10\(^7\). (100 + 10 + 1)
= 10\(^6\) . 2 . 555 chia hết cho 555
b) Ta thấy: 16\(^5\)= 2\(^{20}\)
=> A = 16\(^5\) + 2\(^{15}\) = 2\(^{20}\)+ 2\(^{15}\)
= 2\(^{15}\).2\(^5\)+ 2\(^{15}\)
= 2\(^{15}\). (2\(^5\)+1)
= 2\(^{15}\).33
số này luôn chia hết cho 33
b) \(16^5+2^{15}⋮33\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}.\left(1+2^5\right)\)
\(=2^{15}.33⋮33\)
109-108-107=107(102-10-1)=107.91 không chia hết cho 555
1) \(10^{19}+10^{18}+10^{17}=10^{16}.10^3+10^{16}.10^2+10^{16}.10=10^{16}.\left(1000+100+10\right)=10^{16}.1110\)
vì 1110 : 555 bằng 2
=> ................... chia hết cho 555
1) ( 1019+ 1018+1017) chia hết cho 555
= 1017.102+1018.10+1017
= 1017.(102+10+1)
= 1017.111
= 1016.10.111
= 1016.1110 = 1016.555.2
=> ( 1019+ 1018+1017) chia hết cho 555
a) \(\left(10^{2023}+8\right)=8+10000...000\left(23so0\right)\)
có tổng các chữ số là \(1+8=9⋮9\)
\(\Rightarrow\left(10^{2023}+8\right)⋮9\)
b) \(\left(10^{19}+10^{18}+10^{17}\right)=10^{17}\left(10^2+10^1+1\right)\)
\(=10^{17}\left(100+10+1\right)=10^{16}.2.5.111\)
\(=10^{16}.2.555⋮555\)
\(\Rightarrow dpcm\)
a) ................. TCCS là 1 + 8 = 9 ⋮ 9
b) ................. = 1016.2.555 ⋮ 555