K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2023

Ta có :

\(AH^2=AB^2+BH^2\left(1\right)\) (Δ ABH vuông tại H)

\(AH^2=AC^2+CH^2\left(2\right)\) (Δ ACH vuông tại H)

\(\left(1\right),\left(2\right)\Rightarrow AB^2+BH^2=AC^2+CH^2\)

\(\Rightarrow CH^2=AB^2+BH^2-AC^2\)

\(\Rightarrow CH^2=81+676-121=636\)

\(\Rightarrow CH=\sqrt[]{636}=\sqrt[]{4.159}=2\sqrt[]{159}\left(cm\right)\)

31 tháng 7 2023

loading...

Vì AH là đường cao của tam giác ABC nên AH \(\perp\) BC \(\equiv\) H

⇒ \(\Delta\) AHB  \(\perp\)  \(\equiv\) H \(\Rightarrow\) AB > BH ⇒  9 cm > 26 cm vô lý

Em có hai sựa lựa chọn: 1 là em chỉ ra cái sai của cô

                                         2 là em xem lại đề bài của em 

20 tháng 1 2022

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Vì tam giác \(ABC\) đồng dạng với tam giác \(A'B'C'\) nên tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\). Do đó, \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Thay số, \(\frac{{A'B'}}{4} = \frac{{B'C'}}{9} = \frac{{A'C'}}{6}\). Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{{A'B'}}{4} = \frac{{B'C'}}{9} = \frac{{A'C'}}{6} = \frac{{A'B' + B'C' + A'C'}}{{4 + 6 + 9}} = \frac{{66,5}}{{19}} = 3,5\)

Ta có:

\(\left\{ \begin{array}{l}\frac{{A'B'}}{4} = 3,5 \Rightarrow A'B' = 3,5.4 = 14\\\frac{{A'C'}}{6} = 3,5 \Rightarrow A'C' = 3,5.6 = 21\\\frac{{B'C'}}{9} = 3,5 \Rightarrow B'C' = 3,5.9 = 31,5\end{array} \right.\)

Vậy \(A'B' = 14cm,A'C' = 21cm,B'C' = 31,5cm\).

31 tháng 7 2016

xét tam giác abc vuông tại a ta có

\(\cos B=\)kề/huyền\(=\frac{AB}{BC}=\frac{9}{6}\)

19 tháng 3 2022

C

16 tháng 3 2017

ai bt làm ko chỉ mik với

2 tháng 10 2017

Hướng dẫn:

∆ ABC ∼  ∆ HAC nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra HC = 4/3HA = 12. Chọn C.