K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

xét tam giác abc vuông tại a ta có

\(\cos B=\)kề/huyền\(=\frac{AB}{BC}=\frac{9}{6}\)

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

7 tháng 9 2017

a. tám giác ABC có A=90, B=60 => C=30

trong 1 tam giác vuông, cạnh đối diện với góc 30 độ thì =1/2 cạnh huyền

=> 2AB=BC hay BC=12

áp dụng đlý pytago vào ABC, ta tính đc AC=\(6\sqrt{3}\)

b. tam giác ABC có BD là tia phân giác góc B =>\(\frac{AD}{DC}=\frac{AB}{BC}< =>\frac{AD}{AB}=\frac{DC}{BC}=>\frac{AD+DC}{AB+BC}=\frac{AC}{6+12}=\frac{6\sqrt{3}}{18}\)

=>\(\frac{AD}{AB}=\frac{6\sqrt{3}}{18}=>AD=\frac{6\sqrt{3}.6}{18}=2\sqrt{3}\)

áp dụng đlý pytago vào ABD => BD=\(4\sqrt{3}\)

7 tháng 8 2023

Cách 1:
\(AC=\sqrt{BC^2-AB^2}=8\) cm

Từ D kẻ \(DH\perp BC\) tại H

Xét hai tam giác vuông DHB và DAB có:

\(\widehat{DBH}=\widehat{DBA}\) ( do BD là tia phân giác góc B)

BD chung

Nên \(\Delta DHB=\Delta DAB\left(ch-gn\right)\)

Suy ra \(HB=AB=6cm\Rightarrow HC=4cm\) và \(DH=DA\)

Áp dụng định lý pytago vào tam giác DHC vuông tại H có:

\(DC^2=4^2+DH^2\) \(\Leftrightarrow\left(AC-AD\right)^2=16+DA^2\) 

\(\Leftrightarrow\left(8-AD\right)^2=16+AD^2\)

\(\Leftrightarrow AD=3\) \(\Rightarrow BD=\sqrt{AD^2+AB^2}=3\sqrt{5}\) cm

Cách 2:

\(\dfrac{DC}{DA}=\dfrac{BC}{BA}=\dfrac{10}{6}=\dfrac{5}{3}\)\(\Leftrightarrow\dfrac{DC}{5}=\dfrac{DA}{3}=\dfrac{DC+DA}{5+3}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)

\(\Rightarrow DC=5,DA=3\)

Làm tương tự như trên 

o. Tính BE

Có \(\dfrac{EA}{EC}=\dfrac{BA}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)

\(\Leftrightarrow\dfrac{EA}{EA+AC}=\dfrac{3}{5}\Leftrightarrow\dfrac{EA}{EA+8}=\dfrac{3}{5}\Leftrightarrow EA=12\)

\(BE=\sqrt{ED^2-BD^2}=\sqrt{\left(EA+AD\right)^2-BD^2}=6\sqrt{5}\) ( \(BE\perp BD\) do hai đường phân giác của hai góc kề bù)

Kết luận:...

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=\dfrac{144}{9}=16\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow AB^2=12^2+16^2=400\)

hay AB=20(cm)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=CH^2+AH^2\)

\(\Leftrightarrow AC^2=9^2+12^2=225\)

hay AC=15(cm)

Ta có: BH+CH=BC

nên BC=9+16=25(cm)

6 tháng 8 2021

Theo hệ thức lượng trong tam giác vuông:

• `AH^2=HB.HC => HB=12^2 : 9=16(cm)`

`=> BC=HB+HC=9+16=25(cm)`

• `AB^2=HB.BC=>AB=\sqrt(16.25)=20(cm)`

•`AC^2=HC.BC=>AC=15(cm)`

Vậy...

29 tháng 4 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra tam giác ABE đều ⇒ AB = BE = EA = 6 (cm)     (1)

Khi đó: CE = BC + BE = 12 + 6 = 18 (cm)

Tam giác ACE có AE // BD nên suy ra:

7 tháng 8 2021

AB = BH . BC = 9.BH 

mà BH = \(\dfrac{1}{2}AB\) => AB = 4,5 . AB

=> AB= 4,5

=> BH = 2,25 => HC = 6,75

Tam giác ABH vuông tại H =>AH=\(\dfrac{9\sqrt{3}}{4}\)

Tam giác AHC vuông tại H => AC=\(\dfrac{9\sqrt{3}}{2}\)

21 tháng 5 2022

sai