K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3-\left(\dfrac{1}{2}\right)^4+...-\dfrac{1}{2022}+\dfrac{1}{2023}\\ \Rightarrow B=\dfrac{2}{2^2}-\dfrac{1}{2^2}+\dfrac{2}{2^4}-\dfrac{1}{2^4}+...+\dfrac{2}{2^{2024}}-\dfrac{1}{2^{2024}}\)

\(\Rightarrow B=\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{2024}}\)

\(\Rightarrow B=\dfrac{2^{2022}}{2^{2024}}+\dfrac{2^{2020}}{2^{2024}}+...+\dfrac{1}{2^{2024}}\\ \Rightarrow2^2B=\dfrac{2^{2024}}{2^{2024}}+\dfrac{2^{2022}}{2^{2024}}+...+\dfrac{2^2}{2^{2024}}\)

\(\Rightarrow4B-B=\dfrac{2}{2^{2024}}-\dfrac{1}{2^{2024}}\\ \Rightarrow3B=1-\left(\dfrac{2}{2^{2024}}+\dfrac{1}{2^{2024}}\right)\)

\(\Rightarrow3B=1-\dfrac{3}{2^{2024}}\\ \Rightarrow B=\dfrac{1-\dfrac{3}{2^{2024}}}{3}\)

\(\Rightarrow B=\dfrac{3\left(\dfrac{1}{3}-\dfrac{1}{2^{2024}}\right)}{3}\\ B=\dfrac{1}{3}-\dfrac{1}{2^{2024}}\)

 

3 tháng 5 2023

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022

B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\) 

B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\) 

B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))

Vậy B > C 

 

29 tháng 12 2021

A=(-1)+(-1)+...+(-1)+2023

=2023-1011

=1012

25 tháng 12 2022

??????

3 tháng 5 2023

\(A=\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3-\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{2023}-\left(\dfrac{1}{2}\right)^{2024}\)

\(A=\dfrac{2}{2^2}-\dfrac{1}{2^2}+\dfrac{2}{2^4}-\dfrac{1}{2^4}+...+\dfrac{2}{2^{2024}}-\dfrac{1}{2^{2024}}\)

\(A=\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{2024}}\)

\(A=\dfrac{2^{2022}}{2^{2024}}+\dfrac{2^{2020}}{2^{2024}}+\dfrac{2^{2018}}{2^{2024}}+...+\dfrac{1}{2^{2024}}\)

\(2^2A=\dfrac{2^{2024}}{2^{2024}}+\dfrac{2^{2022}}{2^{2024}}+\dfrac{2^{2020}}{2^{2024}}+...+\dfrac{2^2}{2^{2024}}\)

\(\Rightarrow4A-A=3A=1-\dfrac{2}{2^{2024}}-\dfrac{1}{2^{2024}}\)

\(3A=1-\left(\dfrac{2}{2^{2024}}+\dfrac{1}{2^{2024}}\right)\)

\(3A=1-\dfrac{3}{2^{2024}}\)

\(A=\dfrac{1-\dfrac{3}{2^{2024}}}{3}\)

\(A=\dfrac{3\left(\dfrac{1}{3}-\dfrac{1}{2^{2024}}\right)}{3}\)

\(A=\dfrac{1}{3}-\dfrac{1}{2^{2024}}\)

3 tháng 5 2023

giúp mk vs các bn. chiều nay mk phải nộp r

6 tháng 1

\(3B=1.3^2+2.3^3+3.3^4+...+2022.3^{2023}+2023.3^{2024}\)

\(2B=3B-B=-3-3^2-3^3-...-3^{2023}+2023.3^{2024}\)

\(2B=2023.3^{2024}-\left(3+3^2+3^3+...+3^{2023}\right)\)

Đặt 

\(C=3+3^2+3^3+...+3^{2023}\)

\(3C=3^2+3^3+3^4+...+3^{2024}\)

\(2C=3C-C=3^{2024}-3\Rightarrow C=\dfrac{3^{2024}-3}{2}\)

\(\Rightarrow2B=2023.3^{2024}-\dfrac{3^{2024}-3}{2}=\)

\(=\dfrac{2.2023.3^{2024}-3^{2024}+3}{2}=\dfrac{4045.3^{2024}+3}{2}\)

\(\Rightarrow B=\dfrac{4045.3^{2024}+3}{4}\)

18 tháng 7 2023

tui làm được câu c thui
c) (1-1/2).(1-1/3).(1-1/4).(1-1/5)...(1-1/2022).(1-1/2023)
= 1 2 3 4 2 3 4 5 . . . . . 2021 2022 2022 2023 = 1.2.3.4.5....2021.2022 2.3.4.5....2022.2023 = 1 2023

24 tháng 7 2021

24^5 K+1

24 tháng 7 2021

@Bé Bin bạn có biết cách giải không zậy