K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

a.)x^2=y^2+2x+12

x^2=y^2+2y+1+11

x^2-(y^2+2y+1)=11

x^2-(y+1)^2=11

(x-y-1)(x+y+1)=11 

suy ra x-y-1=11 và x+y+1=1 hoặc x-y-1=1 và x+y+1=11 

từ đó tìm được x,y 

b.)x^2+xy-2015x-2016y-2017=0

x^2+xy+x-2016x-2016y-2016-1=0

x(x+y+1)-2016(x+y+1)=1 

(x+y+1)(x-2016)=1

=> x+y+1=1 và x-2016=1 hoặc x+y+1=-1 và x-2016=-1 

từ đó tìm được x,y 

6 tháng 5 2017

cảm ơn Huy Nguyen Đuc

6 tháng 9 2017

\(x^2+xy-2015x-2016y-2017=0\)

\(\Rightarrow\left(x^2+xy+x\right)-\left(2016x-2016y-2016\right)=1\)

\(\Rightarrow x.\left(x+y+1\right)-2016.\left(x+y+1\right)=1\)

\(\Rightarrow\left(x-2016\right).\left(x+y+1\right)=1\)

Xét TH1: \(x-2016=1\)\(x+y+1=1\)

\(\Rightarrow x=......;y=.......\)

Xét TH2: \(x-2016=-1\)\(x+y+1=-1\)

\(\Rightarrow x=......;y=.......\)

19 tháng 11 2016

\(ppppppp\)

a: x>2

y>2

=>x+y>2+2=4

x>y>2

=>xy>2^2=4

b: x^2-xy=x(x-y)

x-y>0; x>0

=>x(x-y)>0

=>x^2-xy>0

y>2

=>y-2>0

=>y(y-2)>0

=>y^2-2y>0

x>y và y>2

=>y>0 và x-y>0

=>y(x-y)>0

=>xy-y^2>0

a: \(\dfrac{\left(x+1\right)}{x^2+2x-3}=\dfrac{\left(x+1\right)}{\left(x+3\right)\cdot\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+5\right)}{\left(x+3\right)\left(x-1\right)\left(x+2\right)\left(x+5\right)}\)

\(\dfrac{-2x}{x^2+7x+10}=\dfrac{-2x}{\left(x+2\right)\left(x+5\right)}=\dfrac{-2x\left(x+3\right)\left(x-1\right)}{\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x-1\right)}\)

b: \(\dfrac{x-y}{x^2+xy}=\dfrac{x-y}{x\left(x+y\right)}=\dfrac{y^2\left(x-y\right)}{xy^2\left(x+y\right)}\)

\(\dfrac{2x-3y}{xy^2}=\dfrac{\left(2x-3y\right)\left(x+y\right)}{xy^2\left(x+y\right)}\)

c: \(\dfrac{x-2y}{2}=\dfrac{\left(x-2y\right)\left(x-xy\right)}{2\left(x-xy\right)}\)

\(\dfrac{x^2+y^2}{2x-2xy}=\dfrac{x^2+y^2}{2\left(x-xy\right)}\)