Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{1-x}=a\Rightarrow a^2=1-x\)
\(\sqrt{1+x}=b\Rightarrow b^2=1+x\)
\(\Rightarrow a^2+b^2=2\)
ta có: \(P=\frac{2017-2015x}{\sqrt{1-x^2}}=\frac{2015\left(1-x\right)+2}{\sqrt{\left(1-x\right)\left(1+x\right)}}\)
\(\Rightarrow P=\frac{2015.a^2+a^2+b^2}{ab}=\frac{2016a^2+b^2}{ab}\ge\frac{2.ab.\sqrt{2016}}{ab}=2\sqrt{2016}\)
=> GTNN của P là \(2\sqrt{2016}\)<=>\(a\sqrt{2016}=b\Leftrightarrow\sqrt{\left(1-x\right).2016}=\sqrt{1+x}\)
\(\Leftrightarrow x=\frac{2015}{2017}\)
2(xy)2 - 5xy + 2 = 0
Đặt xy=a \(\Rightarrow\) 2a2 - 5a +2 =0
\(\Leftrightarrow\) 2a2-4a-a+2 = 0
\(\Leftrightarrow\) (2a-1)(a-2)=0
\(\Rightarrow\) a=\(\dfrac{1}{2}\) hoặc a=2\(\Leftrightarrow\) xy=\(\dfrac{1}{2}\) hoặc xy=2. (cần thêm điều kiện của x_y để giải phương trình)