Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.)x^2=y^2+2x+12
x^2=y^2+2y+1+11
x^2-(y^2+2y+1)=11
x^2-(y+1)^2=11
(x-y-1)(x+y+1)=11
suy ra x-y-1=11 và x+y+1=1 hoặc x-y-1=1 và x+y+1=11
từ đó tìm được x,y
b.)x^2+xy-2015x-2016y-2017=0
x^2+xy+x-2016x-2016y-2016-1=0
x(x+y+1)-2016(x+y+1)=1
(x+y+1)(x-2016)=1
=> x+y+1=1 và x-2016=1 hoặc x+y+1=-1 và x-2016=-1
từ đó tìm được x,y
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
\(\Leftrightarrow2x^2-x+1=xy+2y\)
\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)
\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)
Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)
Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)
\(\Rightarrow y=14\)
Vậy \(\left(x;y\right)=\left(9;14\right)\)
\(x^2+xy-2015x-2016y-2017=0\)
\(\Rightarrow\left(x^2+xy+x\right)-\left(2016x-2016y-2016\right)=1\)
\(\Rightarrow x.\left(x+y+1\right)-2016.\left(x+y+1\right)=1\)
\(\Rightarrow\left(x-2016\right).\left(x+y+1\right)=1\)
Xét TH1: \(x-2016=1\) và \(x+y+1=1\)
\(\Rightarrow x=......;y=.......\)
Xét TH2: \(x-2016=-1\) và \(x+y+1=-1\)
\(\Rightarrow x=......;y=.......\)