K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

a.)x^2=y^2+2x+12

x^2=y^2+2y+1+11

x^2-(y^2+2y+1)=11

x^2-(y+1)^2=11

(x-y-1)(x+y+1)=11 

suy ra x-y-1=11 và x+y+1=1 hoặc x-y-1=1 và x+y+1=11 

từ đó tìm được x,y 

b.)x^2+xy-2015x-2016y-2017=0

x^2+xy+x-2016x-2016y-2016-1=0

x(x+y+1)-2016(x+y+1)=1 

(x+y+1)(x-2016)=1

=> x+y+1=1 và x-2016=1 hoặc x+y+1=-1 và x-2016=-1 

từ đó tìm được x,y 

6 tháng 5 2017

cảm ơn Huy Nguyen Đuc

6 tháng 9 2017

\(x^2+xy-2015x-2016y-2017=0\)

\(\Rightarrow\left(x^2+xy+x\right)-\left(2016x-2016y-2016\right)=1\)

\(\Rightarrow x.\left(x+y+1\right)-2016.\left(x+y+1\right)=1\)

\(\Rightarrow\left(x-2016\right).\left(x+y+1\right)=1\)

Xét TH1: \(x-2016=1\)\(x+y+1=1\)

\(\Rightarrow x=......;y=.......\)

Xét TH2: \(x-2016=-1\)\(x+y+1=-1\)

\(\Rightarrow x=......;y=.......\)

NV
3 tháng 1

\(\Leftrightarrow x^2+3xy+3y^2+xy-2x-6y=5\)

\(\Leftrightarrow x\left(x+3y\right)+y\left(x+3y\right)-2\left(x+3y\right)=5\)

\(\Leftrightarrow\left(x+y-2\right)\left(x+3y\right)=5\)

Bảng giá trị:

x+y-2-5-115
x+3y-1-551
x-44210
y1-31-3

Vậy \(\left(x;y\right)=\left(-4;1\right);\left(4;-3\right);\left(2;1\right);\left(10;-3\right)\)

27 tháng 2 2021

2(x+y)+16-xy=0

<=> 2x+2y+16-xy=0

<=> y(2-x)-2(2-x)+20=0

<=> (2-x)(y-2)=-20

Vì x,y thuộc Z

=> 2-x;y-2 thuộc Z

=> 2-x;y-2 \(\inƯ\left(-20\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)

Xét bảng


 

2-x1-12-24-45-510-1020-20
y-2-2020-1010-55-44-22-11
x1304-26-37-812-1822
y-1822-812-37-260413

Vậy.........

9 tháng 1 2021

Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).

Vậy pt vô nghiệm nguyên.

9 tháng 1 2021

2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).