Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.)x^2=y^2+2x+12
x^2=y^2+2y+1+11
x^2-(y^2+2y+1)=11
x^2-(y+1)^2=11
(x-y-1)(x+y+1)=11
suy ra x-y-1=11 và x+y+1=1 hoặc x-y-1=1 và x+y+1=11
từ đó tìm được x,y
b.)x^2+xy-2015x-2016y-2017=0
x^2+xy+x-2016x-2016y-2016-1=0
x(x+y+1)-2016(x+y+1)=1
(x+y+1)(x-2016)=1
=> x+y+1=1 và x-2016=1 hoặc x+y+1=-1 và x-2016=-1
từ đó tìm được x,y
\(x^2+xy-2015x-2016y-2017=0\)
\(\Rightarrow\left(x^2+xy+x\right)-\left(2016x-2016y-2016\right)=1\)
\(\Rightarrow x.\left(x+y+1\right)-2016.\left(x+y+1\right)=1\)
\(\Rightarrow\left(x-2016\right).\left(x+y+1\right)=1\)
Xét TH1: \(x-2016=1\) và \(x+y+1=1\)
\(\Rightarrow x=......;y=.......\)
Xét TH2: \(x-2016=-1\) và \(x+y+1=-1\)
\(\Rightarrow x=......;y=.......\)
\(\Leftrightarrow x^2+3xy+3y^2+xy-2x-6y=5\)
\(\Leftrightarrow x\left(x+3y\right)+y\left(x+3y\right)-2\left(x+3y\right)=5\)
\(\Leftrightarrow\left(x+y-2\right)\left(x+3y\right)=5\)
Bảng giá trị:
x+y-2 | -5 | -1 | 1 | 5 |
x+3y | -1 | -5 | 5 | 1 |
x | -4 | 4 | 2 | 10 |
y | 1 | -3 | 1 | -3 |
Vậy \(\left(x;y\right)=\left(-4;1\right);\left(4;-3\right);\left(2;1\right);\left(10;-3\right)\)
2(x+y)+16-xy=0
<=> 2x+2y+16-xy=0
<=> y(2-x)-2(2-x)+20=0
<=> (2-x)(y-2)=-20
Vì x,y thuộc Z
=> 2-x;y-2 thuộc Z
=> 2-x;y-2 \(\inƯ\left(-20\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)
Xét bảng
2-x | 1 | -1 | 2 | -2 | 4 | -4 | 5 | -5 | 10 | -10 | 20 | -20 |
y-2 | -20 | 20 | -10 | 10 | -5 | 5 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 1 | 3 | 0 | 4 | -2 | 6 | -3 | 7 | -8 | 12 | -18 | 22 |
y | -18 | 22 | -8 | 12 | -3 | 7 | -2 | 6 | 0 | 4 | 1 | 3 |
Vậy.........
Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).
Vậy pt vô nghiệm nguyên.
2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).