Tim y
y x 1/2 + 3/2 x y = 4/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y.3\dfrac{7}{12}=6\dfrac{1}{4}\)
\(y.\dfrac{43}{12}=\dfrac{25}{4}\)
\(y=\dfrac{25}{4}:\dfrac{43}{12}\)
\(y=\dfrac{25.12}{4.43}\)
\(y=\dfrac{75}{43}\)
a, 1, Vì |x - 2019| ≥ 0 ; (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 + (-2) ≥ (-2) => A ≥ -2
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-2019=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2019\\y=1\end{cases}}\)
Vậy GTNN A = -2 khi x = 2019 và y = 1
2, Ta có: |x - 3| = |3 - x|
Vì |x - 3| + |x + 4| ≥ |x - 3 + x + 4| = |1| = 1
=> C ≥ 1 - 5 => C ≥ -4
Dấu " = " xảy ra <=> (3 - x)(x + 4) ≥ 0
+) Th1: \(\hept{\begin{cases}3-x\ge0\\x+4\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Rightarrow}-4\le x\le3\)
+) Th2: \(\hept{\begin{cases}3-x\le0\\x+4\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\le-4\end{cases}}\)(Vô lý)
Vậy GTNN của C = -4 khi -4 ≤ x ≤ 3
b,
1, Vì |x2 - 25| ≥ 0 => 4|x2 - 25| ≥ 0 => 32 - 4|x2 - 25| ≤ 32 = 9
Dấu " = " xảy ra <=> x2 - 25 = 0 <=> x2 = 25 <=> x = 5 hoặc x = -5
Vậy GTLN B = 9 khi x = 5 hoặc x = -5
2, Đk: x ≠ 5
\(D=\frac{x-4}{x-5}=\frac{\left(x-5\right)+1}{x-5}=1+\frac{1}{x-5}\)
Để D mang giá trị lớn nhất <=> \(\frac{1}{x-5}\)mang giá trị lớn nhất <=> x - 5 mang giá trị nhỏ nhất <=> x - 5 = 1 <=> x = 6
=> \(D=1+1=2\)
Vậy GTLN của D = 2 khi x = 6
Bài 2:
a: \(\left(-1\right)\cdot\left(-2\right)\cdot\left(-3\right)\cdot\left(-4\right)\cdot\left(-5\right)\cdot\left[\left(-3\right)-\left(-5\right)\right]\)
\(=-\left(1\cdot2\cdot3\cdot4\cdot5\right)\cdot\left[-3+5\right]\)
\(=-120\cdot2=-240\)
b: \(1-2+3-4+5-6+...-98+99\)
=(-1)+(-1)+...+(-1)+99
=99-49=50
Vì x,y tỉ lệ thuận nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
a: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{3}=\dfrac{-2}{\dfrac{3}{8}}=-2\cdot\dfrac{8}{3}=-\dfrac{16}{3}\)
=>\(x_1=-16\)
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow\dfrac{x_2}{x_1}=\dfrac{y_2}{y_1}\)
\(\Leftrightarrow\dfrac{x_2}{-6}=\dfrac{y_2}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_2}{-6}=\dfrac{y_2}{4}=\dfrac{y_2-x_2}{4-\left(-6\right)}=\dfrac{-5}{10}=-\dfrac{1}{2}\)
Do đó: \(x_2=3;y_2=-2\)
\(y\times\dfrac{3}{4}+\dfrac{2}{5}=1\)
\(\Leftrightarrow y\times\dfrac{3}{4}=1-\dfrac{2}{5}\)
\(\Leftrightarrow y\times\dfrac{3}{4}=\dfrac{3}{5}\)
\(\Leftrightarrow y=\dfrac{3}{5}:\dfrac{3}{4}\)
\(\Leftrightarrow y=\dfrac{3}{5}\times\dfrac{4}{3}\)
\(\Leftrightarrow y=\dfrac{4}{5}\)
y x \(\frac{1}{2}\)+ y x \(\frac{3}{2}\) = \(\frac{4}{5}\)
y x ( \(\frac{1}{2}\)+ \(\frac{3}{2}\) ) = \(\frac{4}{5}\)
y x \(\frac{3}{4}\) = \(\frac{4}{5}\)
y = \(\frac{4}{5}\) : \(\frac{3}{4}\)
y = \(\frac{16}{15}\)
~ ai thấy mk tả lời đúng thì tk mk nha ~