K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

Ta có : \(\frac{1}{2^2}=\frac{1}{4}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

.....................

\(\frac{1}{2017^2}< \frac{1}{2016.2017}\)

\(\Rightarrow A< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(\Rightarrow A=\frac{1}{4}+\frac{1}{2}-\frac{1}{2017}\)

\(A=\frac{3}{4}-\frac{1}{2017}\left(đpcm\right)\) . Vậy A < \(\frac{3}{4}\)

Chữa đề \(\frac{2017}{4038}< A< \frac{2017}{2018}\)

Ta có: \(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)

\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(\Leftrightarrow A< 1-\frac{1}{2018}=\frac{2017}{2018}\)(1)

Lại có: \(A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(\Leftrightarrow A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(\Leftrightarrow A>\frac{1}{2}-\frac{1}{2019}=\frac{2017}{4038}\)(2) 

Từ (1) và (2) => đpcm

\(A=1+2+2^2+2^3+...+2^{2017}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2018}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2018}\right)-\left(1+2+2^2+...+2^{2017}\right)\)

\(\Rightarrow A=2^{2018}-1\left(đpcm\right)\)

22 tháng 12 2018

\(A=1+2+2^2+2^3+...+2^{2017}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2018}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2018}\right)\)\(-\left(1+2+2^2+...+2^{2017}\right)\)

\(\Rightarrow A=2^{2018}-1\)

29 tháng 3 2017

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}+\frac{1}{2017^2}\)

\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2016.2016}+\frac{1}{2017.2017}\)

Ta thấy \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};\frac{1}{4.4}< \frac{1}{3.4};...;\frac{1}{2016.2016}< \frac{1}{2016.2017};\frac{1}{2017.2017}< \frac{1}{2017.2018}\)

Suy ra \(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}+\frac{1}{2017.2018}\)

Nên \(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-...+\frac{1}{2017}-\frac{1}{2018}\)

Khi đó \(A< 1-\frac{1}{2018}< 1\)nên A < 1

Suy ra A - 1 < 0

Vậy A - 1 < 0

9 tháng 5 2016

hhv vbmkj55144466

17 tháng 2 2017

A=1/2^2 + 1/3^2 + 1/4^2 + ... + 1/2017^2

A < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2016.2017

A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2016 - 1/2017

A < 1 - 1/2017 < 1 (1)

B = 2!/3! + 2!/4! + 2!/5! + ... + 2!/2017!

B = 2!.(1/3! + 1/4! + 1/5! + ... + 1/2017!)

B < 2.(1/2.3 + 1/3.4 + 1/4.5 + ... + 1/2016.2017)

B < 2.(1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/2016 - 1/2017)

B < 2.(1/2 - 1/2017) < 2.1/2 = 1 (2)

Từ (1) và (2) => A + B < 2 (đpcm)