A=1/100+1/101+1/102+1/103+...+1/200.So sanh A voi 3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(101A=\frac{101\left(101^{102}+1\right)}{101^{103}+1}=\frac{101^{103}+101}{101^{103}+1}=\frac{101^{103}+1+100}{101^{103}+1}=\frac{101^{103}+1}{101^{103}+1}+\frac{100}{101^{103}+1}=1+\frac{100}{100^{103}+1}\)
\(101B=\frac{101\left(101^{103}+1\right)}{101^{104}+1}=\frac{101^{104}+101}{101^{104}+1}=\frac{101^{104}+1+100}{101^{104}+1}=\frac{101^{104}+1}{101^{104}+1}+\frac{100}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)
vì 100103+1<100104+1
=>\(\frac{100}{100^{103}+1}>\frac{100}{100^{104}+1}\)
=>\(1+\frac{100}{100^{103}+1}>1+\frac{100}{100^{104}+1}\)
=>A>B
c) P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
Dễ thấy \(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}.50=\dfrac{1}{3}\)(1)
Tương tự
\(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>50.\dfrac{1}{200}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta được
\(P>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)
P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
\(\overline{50\text{ hạng tử }}\) \(\overline{50\text{ hạng tử }}\)
\(< \left(\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\right)+\left(\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\right)\)
\(=\dfrac{1}{100}.50+\dfrac{1}{150}.50=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\Rightarrow P< \dfrac{5}{6}< 1\)
b) Ta có: \(\frac{1}{101}>0\)
\(\frac{1}{102}>0\)
...............,....
\(\frac{1}{200}>0\)
\(\Rightarrow S>0\left(1\right)\)
Lại có: \(\frac{1}{101}< \frac{1}{100}\)
\(\frac{1}{102}< \frac{1}{100}\)
......................
\(\frac{1}{200}< \frac{1}{100}\)
\(\Rightarrow S< \frac{1}{100}.100\)
\(\Rightarrow S< 1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow0< S< 1\)
Vậy S ko là số tự nhiên
a, ta có 1/101<1/100; 1/102<1/100;...;1/109<1/100
=> S=1/101+1/102+...+1/109< 1/100+1/100+...+1/100=9/100
=>S<9/100
b,ta thấy S luôn >0
S=1/101+1/102+...+1/200<1/100+1/100+...+1/100=1
=>S<1
=>0<S<1 => S không phải số tự nhiên
\(B=\frac{101}{102}+\frac{102}{103}+\frac{103}{101}\)
\(B=1\)
B < 3
1/ Ta có : tất cả các p/s ở tổng A đều có tử bằng 1 . Mà MS 101 < 102 ; 103 ; ... ; < 200 .
Nên 1/101 là p/s lớn nhất ( lớn hơn 1/102 ; 1/103 ; ... ; 1/200 )
2/ Tổng A có phân số là : ( 200 - 101 ) : 1 + 1 = 100 (phân số ) .
Nếu thay cả 100 p/s bằng p/s lớn nhất : 1/101 thì tổng A = 1/101 . 100 = 100/101 < 1 .
=> 1/101 + 1/102 + 1/103 + ... + 1/200 ( 100p/s ) < 1/101 + 1/101 + 1/101 + ... + 1/101 (100 p/s ) < 1 .
Vậy : A < 1
A=\(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)
(Sử dung phương pháp chặn số đầu)
\(\frac{1}{100}\)>\(\frac{1}{101}\)
\(\frac{1}{100}\)>\(\frac{1}{102}\)
...
\(\frac{1}{100}\)>\(\frac{1}{200}\)
nên \(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)> \(\frac{1}{100}\)+\(\frac{1}{100}\)+...+\(\frac{1}{100}\)(có 101 phân số)
\(\Rightarrow\)\(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)>101.\(\frac{1}{100}\)=\(\frac{101}{100}\)>1>\(\frac{3}{4}\)
\(\Rightarrow\)A >\(\frac{3}{4}\)