K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2023

\(\left(x+2022\right)\left(x-2023\right)=0\)

\(\Leftrightarrow x+2022=0\) hoặc \(x-2023=0\)

\(\Leftrightarrow x=-2022\) hoặc \(x=2023\)

16 tháng 12 2023

olm sẽ hướng dẫn em làm bài này như sau:

Bước 1: em giải phương trình tìm; \(x\); y

Bước 2:  thay\(x;y\) vào P

(\(x-1\))2022 + |y + 1| = 0

Vì (\(x-1\))2022 ≥ 0 ∀ \(x\); |y + 1| ≥ 0  ∀ y

⇒ (\(x\) - 1)2022  + |y + 1| = 0

⇔ \(\left\{{}\begin{matrix}\left(x-1\right)^{2022}=0\\y+1=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) (1) 

Thay (1) vào P ta có:

12023.(-1)2022 : )(2.1- 1)2022 +  2023

=  1 + 2023

= 2024

16 tháng 12 2023

a+b+c=12

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

22 tháng 10 2023

|x - 2| + |y - 1| + (x - y - z)²⁰²² = 0 (1)

Do |x - 2| ≥ 0 với mọi x ∈ R

|y - 1| ≥ 0 với mọi x ∈ R

(x - y - z)²⁰²² ≥ 0 với mọi x ∈ R

(1) ⇒  |x - 2| = |y - 1| = (x - y - z)²⁰²² = 0

*) |x - 2| = 0

x - 2 = 0

x = 2

*) |y - 1| = 0

y - 1 = 0

y = 1

*) (x - y - z)²⁰²² = 0

x - y - z = 0

2 - 1 - z = 0

1 - z = 0

z = 1

⇒ C = 26x - 3y²⁰²² + z²⁰²³

= 26.2 - 3.1²⁰²² + 1²⁰²³

= 52 - 3 + 1

= 50

7 tháng 9 2023

kết quả là 1022 nhé bạn

 

17 tháng 9 2023

\(\left(x+2023\right)^{40}+\left(y+2022\right)^{10}=0\)

Ta thấy: \(\left(x+2023\right)^{40}\ge0\forall x\)

              \(\left(y+2022\right)^{10}\ge0\forall x\)

\(\Rightarrow\left(x+2023\right)^{40}+\left(y+2022\right)^{10}\ge0\forall x\)

Mặt khác: \(\left(x+2023\right)^{40}+\left(y+2022\right)^{10}=0\)

nên: \(\left\{{}\begin{matrix}\left(x+2023\right)^{40}=0\\\left(y+2022\right)^{10}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+2023=0\\y+2022=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-2023\\y=-2022\end{matrix}\right.\)

#Toru

17 tháng 9 2023

Ta có:

\(\left(x+2023\right)^{40}+\left(y+2022\right)^{10}=0\)

Mà: \(\left\{{}\begin{matrix}\left(x+2023\right)^{40}\ge0\forall x\\\left(y+2022\right)^{10}\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x+2023\right)^{40}+\left(y+2022\right)^{10}\ge0\forall x,y\)

Dấu "=" xảy ra cũng là nghiệm của phương trình

\(\left\{{}\begin{matrix}\left(x+2023\right)^{40}=0\\\left(y+2022\right)^{10}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2023=0\\x+2022=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2023\\y=-2022\end{matrix}\right.\)

Vậy: ....