Cho a+3>b+3 khi đó
A. a<b. B. a-3>b-3. C. a-3≤ b-3 D. a-3> b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)
Theo t/c dãy tỉ số=nhau:
\(\frac{a+b}{b+3}=\frac{3+d}{d+a}=\frac{a+b+3+d}{b+3+d+a}=1\)
=>a+b=b+3
=>a=3(cùng bớt đi b)
Vậy a=3
Theo t/c dãy tỉ số=nhau:
\(\frac{a+b}{b+3}=\frac{3+d}{d+a}=\frac{a+b+3+d}{b+3+d+a}=1\)
=>a+b=b+3
=>a=3(cùng bớt đi b)
Vậy a=3 thỏa mãn
\(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
\(\Rightarrow\frac{a-b}{c-d}=\frac{bk-b}{dk-d}=\frac{b\left(k-1\right)}{d\left(k-1\right)}=\frac{b}{d}\Rightarrow\left(\frac{a-b}{c-d}\right)^2=\frac{b^2}{d^2}\)
=> Sai đề.
Ta co: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=> \(\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}\)
=>. \(\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)
Ta co: \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{\left(a+c\right)^3}{\left(b+d\right)^3}=\frac{a^3}{b^3}=\frac{c^3}{d^3}=\frac{a^3-c^3}{b^3-d^3}\)
Đáp án: B em nhé
\(a+3>b+3\) khi đó ta sẽ có \(a-3>b-3\)