K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

5 và 13

19 tháng 4 2017

5 VA 13 NHA BN

20 tháng 8 2018

là sao bạn ????

21 tháng 8 2018

\(a^2-b^2=105\Rightarrow\left(a+b\right)\left(a-b\right)=105\Rightarrow5\left(a+b\right)=105\)

\(\Rightarrow\left(a+b\right)=21\)

\(\Rightarrow\hept{\begin{cases}a-b=5\\a+b=21\end{cases}\Rightarrow\left(a-b\right)+\left(a+b\right)=26\Rightarrow2a=26\Rightarrow a=13}\)

\(\Rightarrow b=8\)

bạn tự gọi nhá

15 tháng 7 2016

(a)(2k+4)2−(2k)2=4k2+16k+16−4k2=16k+16=16(k+1)(2k+4)2−(2k)2=4k2+16k+16−4k2=16k+16=16(k+1) chia hết cho 16 (dpcm)

(b)(2k+7)2−(2k+1)2=4k2+28k+49−4k2−4k−1=24k+48=24(k+2)(2k+7)2−(2k+1)2=4k2+28k+49−4k2−4k−1=24k+48=24(k+2) chia hết cho 24 (dpcm)

15 tháng 7 2016

(a)(2k+4)2−(2k)2=4k2+16k+16−4k2=16k+16=16(k+1)(2k+4)2−(2k)2=4k2+16k+16−4k2=16k+16=16(k+1) chia hết cho 16
 (đpcm)
(b)(2k+7)2−(2k+1)2=4k2+28k+49−4k2−4k−1=24k+48=24(k+2)(2k+7)2−(2k+1)2=4k2+28k+49−4k2−4k−1=24k+48=24(k+2) chia hết cho 24 (đpcm)

a) Gọi số chẵn là \(2k\)và \(2k+4\)

\(\Rightarrow\left(2k+4\right)^2-\left(2k\right)^2\)

\(\Rightarrow16\left(k+1\right)\)chia hết cho 16

b) Gọi 2 số lẻ là\(2k+7\)và \(2k+1\)

\(\Rightarrow\left(2k+7\right)^2-\left(2k+1\right)^2\)

\(\Rightarrow24\left(k+2\right)\)chia hết cho 24

8 tháng 7 2019

thưa các cô các a các bà các chú 

Nguyễn Ngọc Minh Khánh coppy mong ad sử lý aaaaa!!!!

20 tháng 7 2016

gọi 2 số chẵn hơn kém nhau 4đv lầ lượt là 2n và 2n+4

ta có: (2n+4)2-(2n)2=(2n+4-2n)(2n+4+2n)=4(4n+4)=16n+16

vì 16n và 16 chia hết cho 16 nên 16n+16 sẽ chia hết cho 16.hay hiệu các bình phương của 2 số chẵn hơn kém nhau 4đv chia hết cho 16

13 tháng 7 2016

Số bé là:

(276-2):2=137

Số lớn là:

137+2=139

Đáp số:số bé:137;số lớn:139

Chúc em học tốt^^

Tổng của 2 số là : 

   276 : 2 = 138 

Số bé là :

  (138-2):2=68

Số lớn là : 

  68 + 2 = 70 

6 tháng 4 2020

Bài 1:

Gọi 2 số là a,b (\(a,b\inℤ\))

Ta có: a+b=51(*)

Mà 2/5a=1/6b

=> a=5/12b

Thay vào (*) ta có: 17/12b=51

=>b=36

28 tháng 5 2020

Bài 1 : 

Gọi số thứ nhất và số thứ hai lần lượt là x và y (x,y thuộc z)

Tổng hai số bằng : \(x+y=51\left(1\right)\)

Biết 2/5 số thứ nhất thì bằng 1/6 số thứ hai 

\(x\frac{2}{5}-y\frac{1}{6}=0\left(2\right)\)

Từ 1 và 2 ta suy ra được hệ phương trình sau :

\(\hept{\begin{cases}x+y=51\\x\frac{2}{5}-y\frac{1}{6}=0\end{cases}}\)\(< =>\hept{\begin{cases}x=51-y\\\frac{2x}{5}-\frac{y}{6}=0\end{cases}}\)

\(< =>\frac{\left(51-y\right)2}{5}-\frac{y}{6}=0\)\(< =>\frac{102-2y}{5}-\frac{y}{6}=0\)

\(< =>\frac{102-2y}{5}=\frac{y}{6}\)\(< =>\left(102-2y\right)6=5y\)

\(< =>612-12y=5y\)\(< =>612=17y\)

\(< =>y=\frac{612}{17}=36\left(3\right)\)

Thay 3 vào 1 ta được : \(x+y=51\)

\(< =>x+36=51< =>x=51-36=15\)

Vậy số thứ nhất và số thứ hai lần lượt là 15 và 36

27 tháng 3 2023

Gọi x là số cần tìm thứ nhất \(\left(x\in N\right)\)

\(x+3\) là số cần tìm thứ hai
Theo đề, ta có :

\(x+\left(x+3\right)=9\)

\(\Leftrightarrow2x=9-3\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)

Vậy số tự nhiên thứ nhất là 3, số thứ hai là 3 + 3 = 6

27 tháng 3 2023

→ Đáp án + Giải thích các bước giải:

→ Gọi số bé là x. ( 10 > x ∈ N* ).

→ Số lớn là : x + 3.

→ Ta có :

x + ( x + 3 ) = 9 ⇔ 2x = 6 ⇔ x = 3. ( nhận ).