K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

122 nha

24 tháng 3 2017

122 nha

21 tháng 12 2019

số cần tìm là 122

24 tháng 3 2017

122 nha

24 tháng 3 2017

gọi số đó là a thì a-2 chia hết cho 3,4,5,6 và a-2 chia 7 dư 1

để a nhỏ nhất => a-2 nhỏ nhất => a-2=120=>a=122

29 tháng 7 2018

Gọi số đó là  \(a(a\in N;a\leq3)\)

The đề bài tao có: \((a-2)\vdots 3;4;5;6\) hay \((a-2)\in BC\{3;4;5;6\}\)

\(BCNN\{3;4;5;6\}=2^2.3.5=60 \) nên \(BC\{3;4;5;6\}=\{0;60;120;180;...\}\)

\(\implies (a-2)\in\{0;60;120;180;...\}\)

\(\implies a\in\{2;62;122;182;...\}\)

Thất 122 là số nhỏ nhất trong các số trên chia cho 7 dư 3.

Vậy số cần tìm là 122.

~ Hok tốt a~

29 tháng 7 2018

ko hiểu

17 tháng 2 2017

a) Gọi số đó là a (\(a\in N;a\ge3\)) thì từ đề toán,ta suy ra a - 2 chia hết cho 3 ; 4 ; 5 ; 6 hay a - 2\(\in\)BC(3 ; 4 ; 5 ; 6)

BCNN(3 ; 4 ; 5 ; 6) = 22.3.5 = 60 nên BC(3 ; 4 ; 5 ; 6) = {0 ; 60 ; 120 ; 180 ; ...}\(\Rightarrow a\in\){2 ; 62 ; 122 ; 182 ; ..}

Ta thấy 122 là số nhỏ nhất chia 7 dư 3 trong tập hợp trên nên số cần tìm là 122

b) Giả sử ƯCLN(a ; b) = d thì a = dm ; b = dn(\(m,n\in Z^+\)) và ƯCLN(m ; n) = 1

ƯCLN(a,b).BCNN(a,b) = ab nên BCNN(a,b) = ab : ƯCLN(a,b) = d2mn = dmn

Ta có : 23 = ƯCLN(a,b) + BCNN(a,b) = d(1 + mn) => 1 + mn\(\in\)Ư(23) = {1 ; 23} mà\(mn\ge1\left(m,n\in Z^+\right)\)

\(\Rightarrow1+mn\ge2\)=> 1 + mn = 23 => mn = 22 ; d = 1 => a = m ; b = n mà (m ; n) = (1 ; 22) ; (2 ; 11) và 2 hoán vị

Vậy 2 số cần tìm là 1 và 22 hoặc 2 và 11

17 tháng 2 2017

tim dien h tam giac ABC biet dien h hinh thang KQCB bang 132cm2 biet AK =2/3AB QC=3/2QA

6 tháng 1 2018

Gọi số đó là a(với a thuộc N;a nhỏ hơn hoặc bằng 3)

Từ đề bài ,ta suy ra a-2 chia hết cho 3;4;5;6 hay a-2 thuộc BC(3,4,5,6)

BCNN(3,4,5,6)=22.3.5=60 nên BC(3,4,5,6)={0;60;120;180;...} 

=>a thuộc {2;62;122;182;...}

Ta thấy 122 là số nhỏ nhất chia 7 dư 3 trong tập hợp trên

Vậy số cần tìm là 122

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

Gọi số tự nhiên thỏa mãn đề là $n$. Vì số đó chia $3,4,5,6$ đều dư $2$ nên số đó sẽ có dạng

$n=BCNN(3,4,5,6).k+2$ với $k$ tự nhiên 

$n=60k+2$

$n$ chia $7$ dư $3$ nghĩa là $n-3\vdots 7$

$\Leftrightarrow 60k-1\vdots 7$

$\Leftrightarrow 63k-(60k-1)\vdots 7$

$\Leftrightarrow 3k+1\vdots 7$

$\Leftrightarrow 3k-6\vdots 7$

$\Leftrightarrow k-2\vdots 7$ nên $k=7t+2$ với $t$ tự nhiên.

Thay vô $n$ thì $n=60k+2=60(7t+2)+2=420t+122$

Vì $t\geq 0$ nên $n\geq 122$

Vậy số tự nhiên nhỏ nhất thỏa đề là $122$

30 tháng 1 2016

goi so do la a

suy ra (a-2)chia het cho 3;4;5;6 (a-2) la BC(3;4;5;6)

vay (a-2)thuoc (0;60;120;...)

vay a thuoc (2;62;122;...)

ma 122 chia 7 du 3 vay so can tim la 122

nha