Chứng minh:tg A tg C sin B sin C \(\ge\)\(\frac{27}{8}\),\(\forall\)\(\Delta\)ABC (1),ai nhanh em tick cho.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đg cao BH
a) + \(sinA=\frac{BH}{AB}=\frac{BH}{c}\)
+ \(S_{ABC}=\frac{1}{2}BH\cdot AC=\frac{BH\cdot AC\cdot AB}{2AB}\)
\(=\frac{bc\cdot sinA}{2}\)
b) + \(sinC=\frac{BH}{BC}=\frac{BH}{a}\)
\(\Rightarrow\frac{sinA}{sinC}=\frac{\frac{BH}{c}}{\frac{BH}{a}}=\frac{a}{c}\Rightarrow\frac{a}{sinA}=\frac{c}{sinC}\)
+ Tương tự : \(\frac{a}{b}=\frac{sinA}{sinB}\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}\)
Do đó: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
a) Kẻ \(CE\perp AB\)
Ta có : \(S_{\Delta ABC}=\frac{1}{2}CE.AB\left(1\right)\)
Xét \(\Delta ACE\)có \(\sin A=\frac{EC}{AC}\)
\(\Rightarrow\frac{1}{2}AB.AC.\sin A=\frac{1}{2}AB.AC.\frac{EC}{AC}=\frac{1}{2}AB.EC\left(2\right)\)
Từ (1) và (2) \(\Rightarrow S_{\Delta ABC}=\frac{1}{2}AB.AC.\sin A\left(đpcm\right)\)
b) Kẻ \(BD\perp AC\)
Xét \(\Delta ADB\)có \(\sin A=\frac{BD}{AB}\)
\(\Rightarrow\frac{a}{\sin A}=BC\div\frac{BD}{AB}=\frac{BC.AB}{BD}\left(3\right)\)
Lại có : \(\sin A=\frac{EC}{AC}\)( câu a )
\(\Rightarrow\frac{a}{\sin A}=BC\div\frac{EC}{AC}=\frac{CA.BC}{EC}\left(4\right)\)
Xét \(\Delta BEC\)có \(\sin B=\frac{EC}{BC}\)
\(\Rightarrow\frac{b}{\sin B}=CA\div\frac{EC}{BC}=\frac{CA.BC}{EC}\left(5\right)\)
Xét \(\Delta BDC\)có \(\sin C=\frac{DB}{BC}\)
\(\Rightarrow\frac{c}{\sin C}=AB\div\frac{DB}{BC}=\frac{AB.BC}{DB}\left(6\right)\)
Từ (3) ; (4) ; (5) và (6) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\left(đpcm\right)\)
c) Xét \(\Delta ABD\)có \(\cos A=\frac{AD}{AB}\)
Áp dụng định lí Py-ta-go cho \(\Delta ABD\)vuông tại D ta được :
\(AB^2=BD^2+AD^2\)
Áp dụng định lí Py-ta-go cho \(\Delta BDC\)vuông tại D ta được :
\(BD^2+DC^2=BC^2\)
Ta có : \(b^2+c^2-2bc.\cos A\)
\(=AB^2+AC^2-2AB.AC.\cos A\)
\(=BD^2+AD^2+AC^2-2AB.AC.\frac{AD}{AB}\)
\(=BD^2+\left(AC^2-2AD.AC+AD^2\right)\)
\(=BD^2+\left(AC-AD\right)^2\)
\(=BD^2+DC^2\)
\(=BC^2=a\left(đpcm\right)\)
\(a,sin^2A=sinB.sinC\)
\(\Leftrightarrow\frac{a^2}{4R^2}=\frac{b}{2R}.\frac{c}{2R}\)
\(\Leftrightarrow\frac{a^2}{4R}=\frac{bc}{4R^2}\Leftrightarrow a^2=bc\)
b, Áp dụng định lý cos:
\(CosA=\frac{b^2+c^2-a^2}{2bc}=\frac{b^2+c^2-bc}{2bc}\ge\frac{2bc-bc}{2bc}=-\frac{1}{2}\)
\(S_{ABC}=\frac{bc\sin A}{2}=\frac{ac\sin B}{2}=\frac{ab\sin C}{2}=\frac{abc}{4R}\)
+ Từ \(\frac{bc\sin A}{2}=\frac{ac\sin B}{2}\Rightarrow b\sin A=a\sin B\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\left(1\right)\)
+ Từ \(\frac{ac\sin B}{2}=\frac{ab\sin C}{2}\Rightarrow c\sin B=b\sin C\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(2\right)\)
+ Từ \(\frac{bc\sin A}{2}=\frac{abc}{4R}\Rightarrow\sin A=\frac{a}{2R}\Rightarrow\frac{a}{\sin A}=2R\left(3\right)\)
Từ (1) (2) (3) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\left(dpcm\right)\)
Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)
Ta có : ; ;
;
(1)
Lại có :
(2)
Từ (1) và (2) ta có : (Đpcm)
1) Bất đẳng thức cần chứng minh
\(\Leftrightarrow\) a2 + b2 + c2 + d2 + \(2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow\) \(ac+bd\le\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\left(1\right)\)
Nếu : ac + bd < 0 : BĐT luôn đúng
Nếu : ac + bd \(\ge\) 0 : Thì (1) tương đương
( ac + bd )2 \(\le\) ( a2 + b2 )( c2 + d2 )
\(\Leftrightarrow\) \(\left(ac\right)^2+\left(bd\right)^2+2abcd\le\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\)
\(\Leftrightarrow\) \(\left(ad\right)^2+\left(bc\right)^2-2abcd\ge0\)
\(\Leftrightarrow\) \(\left(ad-bc\right)^2\ge0\) , luôn đúng , vậy bài toán được chứng minh
2) Chọn :\(\left\{{}\begin{matrix}a=2\cos x.\cos y\\c=2\sin x.\sin y\\b=d=\sin\left(x-y\right)\end{matrix}\right.\)
Từ câu 1) ta có :
\(\sqrt{4\cos^2x.\cos^2y+\sin^2\left(x-y\right)}+\sqrt{4\sin^2x.\sin^2y+\sin^2\left(x-y\right)}\)
\(\ge\sqrt{\left(2\cos x.\cos y+2\sin x.\sin y\right)^2+\left(2\sin\left(x-y\right)\right)^2}\)
\(\ge\sqrt{4\cos^2\left(x-y\right)+4\sin^2\left(x-y\right)}=2\)