Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ∆ABC vuông tại A, theo định lý Pytago ta có:
(BC)²=(AB)²+(AC)²
15²=9²+AC² suy ra AC=12
Do 9<12<15suy ra AB<AC<BC
Suy ra BÂC<ABC<BÂC
b)xét ,∆IMC và ∆INB
IC=IB(do AI là đường trung tuyến ∆ABC)
IM=IN(gt);CIM=BIN(đd)suy ra ∆IMC=∆INB(c-g-c)
ICM=IBN(2g tương ứng) mà 2 góc này ở vị trí sole trong suy ra CM//BN kéo dài AC//BN
C) Ta có AI là trung tuyến của ∆ABC vuông tại A(1)có AI ứng với BC mà BC là cạnh huyền
Suy ra AI=½BC=IC suy ra AI=IC suy ra ∆AIC cân tại I
Xét trong ∆AIC cân, có IM là đường cao suy ra IM là đường trung trực ∆AIC suy ra MA=MCsuy ra BM là đường trung tuyến ∆ABC(2)
Từ (1)và(2) ta có :
AI và BM là 2 đường trung tuyến của∆ABC cắt nhau tại G suy ra G là trọng tâm của ∆ABC
Ta có :½ BC+½AC=½.27 =27/2 suy ra BI+AM=27/2
Xét BM và BI ta có : BM>AB( QH giữa đường vuông góc và đường xiên)suy ra 12<BM(1)
BI=BC/2=15/2<12(2)
Từ (1)và (2) ta có: BI<12<BM suy ra BI<BM(3)
Xét ∆AIM vuông tại M có AI là cạnh huyền; AM là cạnh góc vuông
Suy ra:AM<AI(4)
Từ (3)và (4) ta có
BM+AI>BI+AM=27/2
Suy ra BM+AI>27/2
a, Xét \(\Delta MAB\) và \(\Delta MAC\) có:
AB = AC (gt)
MB = MC (gt)
AM là cạnh chung
\(\Rightarrow\Delta MAB=\Delta MAC\) (c.c.c)
b, Vì \(\Delta MAB=\Delta MAC\Rightarrow\widehat{AMB}=\widehat{AMC}\) (hai góc tương ứng) (1)
Mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù) (2)
Từ (1) và (2) => \(\widehat{AMB}=\widehat{AMC}=90^o\)
Vậy \(AM⊥BC\)
c, Từ \(\Delta MAB=\Delta MAC\Rightarrow\widehat{BAM}=\widehat{CAM}\) (hai góc tương ứng)
Vậy AM là tia phân giác của góc BAC
a: Xét ΔAMB và ΔEMC có
MA=ME
góc AMB=góc EMC
MB=MC
Do đó: ΔAMB=ΔEMC
=>góc MAB=góc MEC
=>AB//CE
b: Xét ΔMBE và ΔMCA có
MB=MC
góc BME=góc CMA
ME=MA
Do đó: ΔMBE=ΔMCA
=>góc MBE=góc MCA
=>BE//AC
a: Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
DO đó: ΔBAE=ΔBDE
b: ΔBAE=ΔBDE
nên góc BDE=90 độ
=>DE vuông góc với BC
c: Xét ΔBDK vuông tại D và ΔBAC vuông tại A có
BD=BA
góc B chung
DO đó: ΔBDK=ΔBAC
=>BK=BC
a) Xét ΔADE và ΔCFE có:
AE=EC (E là trung điểm của AC)
ED=EF (E là trung điểm của DF)
∠AED= ∠CEF (đối đỉnh)
=>ΔADE=ΔCFE (c.g.c)
=>∠DAE=∠ECF (2 góc tương ứng)
=>DA//CF
Từ ΔADE=ΔCFE (cmt)
=>AD=CF
Mà AD=DB (D là trung điểm của AB)
=>BD=CF
1)A) vì \(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABC\)CÂN TẠI A
\(\Rightarrow AB=AC\)
XÉT \(\Delta ADB\)VÀ\(\Delta ADC\)CÓ
\(AB=AC\left(CMT\right)\)
\(\widehat{ADB}=\widehat{ADC}\left(GT\right)\)
\(AD\)LÀ CẠNH CHUNG
\(\Rightarrow\Delta ADB=\Delta ADC\left(C-G-C\right)\)
B)VÌ\(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABC\)CÂN TẠI A
=> AB=AC