K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2020

a) Xét ΔADE và ΔCFE có:

AE=EC (E là trung điểm của AC)

ED=EF (E là trung điểm của DF)

∠AED= ∠CEF (đối đỉnh)

=>ΔADE=ΔCFE (c.g.c)

=>∠DAE=∠ECF (2 góc tương ứng)

=>DA//CF

Từ ΔADE=ΔCFE (cmt)

=>AD=CF

Mà AD=DB (D là trung điểm của AB)

=>BD=CF

3 tháng 1 2020

bạn biết làm có mỗi câu a thui hả

a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có

=> AB = 3 cm

Mà AB = AD ( gt)

=> AB = AD = 3cm

b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:

=> DC = 5 cm

=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :

AB = AD 

BC = CD (5cm)

=> Tam giác CAB = tam giác CAD(cgv-ch)

c) Vì BC//DE

=> BCM = MDE (so le trong)

Xét tam giác BMC và tam giác DME ta có :

DM = MC 

BCM = MDE(cmt)

DME = BMC 

=> Tam giác BMC = tam giác DME (g.c.g)

=> BC=DE(dpcm)

d)chịu

19 tháng 4 2020

Cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AD=AB

a, Cho biết AC=4cm, BC=5cm. Tính độ dài AB và BD. Hãy so sánh các góc của tam giác ABC

b, Chứng minh tam giác CBD cân

c, Gọi M là trung điểm của CD, đường thẳng qua D và song song với BC cắt đường thẳng BM tại E. Chứng minh rằng BC = DE và BC+BD>BE

d, Gọi K là gia điểm của AE và DM. Chứng minh rằng BC=6KM

                                         Giải

a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có

=> AB = 3 cm

Mà AB = AD ( gt)

=> AB = AD = 3cm

b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:

=> DC = 5 cm

=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :

AB = AD 

BC = CD (5cm)

=> Tam giác CAB = tam giác CAD(cgv-ch)

c) Vì BC//DE

=> BCM = MDE (so le trong)

Xét tam giác BMC và tam giác DME ta có :

DM = MC 

BCM = MDE(cmt)

DME = BMC 

=> Tam giác BMC = tam giác DME (g.c.g)

=> BC=DE(dpcm)

a) Xét ∆BAD và ∆EAD có : 

AD chung 

AB = AE 

BAD = CAD (AD là phân giác) 

=> ∆BAD = ∆EAD (c.g.c)

=> BD = DE

bl Vì BD = DE 

=> ∆BDE cân tại D 

=> DBE = DEB 

Vì AB = AE (gt)

=> ∆ABE cân tại A 

=> ABE = AEB 

=> ABE + EBC = AEB + BED = ABD = AED 

Mà ABD + DBF = 180° ( kề bù )

AED + DEC = 180° ( kề bù )

Mà ABD = AED (cmt)

=> DBF = DEC 

Xét ∆BDF và ∆EDC có : 

BD = DE 

BDF = EDC ( đối đỉnh )

DBF = DEC ( cmt)

=> ∆BDF = ∆EDC (g.c.g)

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90Chứng minh HK // AB và KB = AH.Chứng minh ΔMAC cân.Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.Chứng minh rằng ΔAHB = ΔAHC.Gọi I là trung điểm...
Đọc tiếp

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.
a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90
Chứng minh HK // AB và KB = AH.
Chứng minh ΔMAC cân.
Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.
Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
Chứng minh rằng ΔAHB = ΔAHC.
Gọi I là trung điểm của cạnh AH. Trên tia đối của tia IB, lấy điểm D sao cho IB = ID. Chứng minh IB = IC, từ đó suy ra AH + BD > AB + AC.
Trên cạnh CI, lấy điểm E sao cho CE 23 CI. Chứng minh ba điểm D, E, H thẳng hàn

Bài 5: Cho ΔABC cân tại A, A= 90. vẽ AH vuông góc với BC tại H.
a) Chứng minh: ΔABH = ΔACH
b) Cho biết AH = 4cm; BH = 3cm. Tính độ dài cạnh AB. 
c) Qua H, vẽ đường thẳng song song với AC cắt cạnh AB tại M. Gọi G là giao điểm của CM và AH. Chứng minh G là trọng tâm của ΔABC và tính độ dài cạnh AG.

(Vẽ hình giúp mk với nha mk cần gấp ạ)

0
Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:a) Tam giác ABC cân ở Ab) O là trọng tâm của tam giác ABCBài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:a) Góc CEB= góc ADC và...
Đọc tiếp

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:

a) Tam giác ABC cân ở A

b) O là trọng tâm của tam giác ABC

Bài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:

a) Góc CEB= góc ADC và Góc EBH= góc ACD

b) BE vuông góc BC

C) DF song song BE

Bài 7: Cho tam giác ABC vuông tại A, có AC=12cm, BC-13cm. Gọi I là trung điểm của BC. Trên tia AI lấy điểm K sao cho IA=IK

a) Tính AB

b)Chứng minh rằng: Tam giác IAB= tam giác IKC, từ đó suy ra tam giác ACK là tam giác vuông

c) Gọi điểm M là trung điểm của AC.Chứng minh: MB=MK

d) MK cắt BC tại N,BM cắt AI tại E. Chứng minh: tam giác MEN cân;EN song song BK

Bài 8: Cho tam giác ABC vuông tại A, có AB= 8cm, BC= 17cm

a) Tính AC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh: Góc DBC= góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BEC vuông. Suy ra DF là phân giác của góc ADE

d) Chứng minh: BE vuông góc với FC

1
2 tháng 5 2016

dài thế bạn.

đọc xong  đề bài mình ngủ luôn

29 tháng 11 2017

nhiều nick  thế 

lm hộ ik mak, mk chỉ cần ý d thoy

4 tháng 5 2018

a, 

ta có : tam giác ABC vuông tại A 

\(\Rightarrow AB^2+AC^2=BC^2\)

thay số : \(5^2+12^2=BC^2\)

               \(BC^2=169\)

\(\Rightarrow BC=\sqrt{169}\)

\(\Rightarrow BC=13\)

mik đag nghĩ