K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2023

Ta có:

\(n^2+3n+11\) 

\(=n^2+3n+18-7\)

\(=\left(n+2\right)\left(n+9\right)-7\)

Giả sử: \(n^2+3n+11\) ⋮ 49 \(\Rightarrow n^2+3n+11\) ⋮ 7

Mà: \(\left(n+9\right)-\left(n+2\right)\) ⋮ 7

Đồng thời ta có: \(\left(n+9\right)\left(n+2\right)\) ⋮ 49 ngược lại 7 \(⋮̸\)49 

Nên điểu giả sử là sai \(\Rightarrow n^2+3n+11⋮̸49\left(dpcm\right)\) 

 

NV
20 tháng 6 2021

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)

\(=5n^2+5n+10\)

\(=5\left(n^2+n+2\right)⋮5\) (đpcm)

16 tháng 9 2023

Đặt n = 3k \(\left(k\inℕ\right)\)

Khi đó P = 9k2 + 3k + 1 = 3k(3k + 1) + 1 \(⋮̸3\)

=> \(P⋮̸9\)

Tương tự với n = 3k + 1

P = 9k2 + 9k + 3 = 9k(k + 1) + 3\(⋮̸9\)

Với n = 3k + 2 

P = 9k2 + 15k + 7 = 3k(3k + 5) + 7 \(⋮̸3\Leftrightarrow P⋮̸9\)

=> ĐPCM 

2 tháng 4 2023

n2+5n+5=(n2+5n)+5

   n2+5n=n.(n+5)

    xét hiệu: (n+5)-n

         mà 5 chia hết cho 5 

=> (n+5)-n chia hết cho 5

hai số (n+5) và n chia hết cho 5 hoặc (n+5) và n chia cho 5 cùng số dư 

th1:hai số (n+5) và n chia hết cho 5 

=> n+5 chia hết cho 5 và n chia hết cho 5

=> n.(n+5) chia hết cho 5 

mà 5 không chia hết cho 25 

=> n2 +5n+5 không chia hết cho 25

th2: n+5 và n  chia cho 5 cùng số dư 

=> n+5 không chia hết cho 5 và n không chia hết cho 5 

=> n.(n+5) không chia hết cho 25

mà 5 chia hết cho 5 

=> n2 + 5n + n  không chia hết cho 25 

vậy với n thuộc N thì n2+5n+5 không chia hết cho 25 

chú ý: không chia hết viết bằng kí hiệu 

23 tháng 7 2021

`(n^2+3n+1)^2-1`

`=(n^2+3n+1)-1^2`

`=(n^2+3n+1+1)(n^2+3n+1-1)`

`=(n^2+3n+2)(n^2+3n)`

`=(n+1)(n+2)n(n+3)`

`=n(n+1)(n+2)(n+3)` là tích của 4 số tự nhiên liên tiếp.

`=> n(n+1)(n+2)(n+3) vdots 24`