Tìm số nguyên n để
(2n+5)chia hết (n+1)
(3n+1)chia hết(n-1)
(n+5)chia hết(2n+1)
Các bạn giúp mình nhanh với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 4n + 5 ⋮ n ( n \(\in\) N*)
5 ⋮ n
n \(\in\)Ư(5) = {-5; -1; 1; 5}
Vì n \(\in\) N nên n \(\in\) {1; 5}
b, 38 - 3n ⋮ n (n \(\in\) N*)
38 ⋮ n
n \(\in\) Ư(38)
38 = 2.19
Ư(38) = {-38; -19; -2; -1; 1; 2; 19; 38}
Nì n \(\in\) N* nên n \(\in\) {1; 2; 19; 38}
c, 3n + 4 ⋮ n - 1 ( n \(\in\) N; n ≠ 1)
3(n - 1) + 7 ⋮ n - 1
7 ⋮ n -1
n - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
lập bảng ta có:
n - 1 | -7 | -1 | 1 | 7 |
n | -6 (loại) | 0 | 2 |
8 |
Theo bảng trên ta có n \(\in\) {0 ;2; 8}
3n + 5 ⋮ 2n + 1
(3n + 5).2 ⋮ 2n + 1
6n + 10 ⋮ 2n + 1
3.(2n + 1) + 7 ⋮ 2n + 1
2n + 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
Lập bảng ta có:
2n+1 | -7 | -1 | 1 | 7 |
n | -4 | -1 | 0 |
3 |
Theo bảng trên ta có
n \(\in\) {-4; -1; 0; 3}
a, 4n + 3 ⋮ 2n - 1
4n - 2 + 5 ⋮ 2n - 1
2.(2n - 1) + 5 ⋮ 2n - 1
5 ⋮ 2n - 1
2n -1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) {-2; 0; 1; 3}
b, 3n - 5 ⋮ n + 1
3n + 3 - 8 ⋮ n + 1
3.(n + 1) - 8 ⋮ n + 1
8 ⋮ n + 1
n + 1 \(\in\) Ư(2) = {-8; -4; -2; -1; 1; 2; 4; 8}
n \(\in\) { -9; -5; -3; -2; 0; 1; 3; 7}
Số nguyên n là 1 .( Có thể sẽ còn thêm một n nào nữa mà mình chưa biết ! )
Cách giải bạn tự làm nha !
Nếu bạn nào thấy đúng , nhớ k cho mình nha !
n+5 chia hết cho 2n+1 thì 2(n+5) cũng chia hết cho 2n+1
Ta có
2(n+5)=2n+1+9. để 2(n+5) chia hết cho 2n+1 thì 9 phải chia hết cho 2n+1
=> 2n+1=-1, 1, -3, 3, -9, 9
+ Với 2n+1=-1 => n=-1
+ Với 2n+1=1 => n=0
+ Với 2n+1=-3 => n=-2
+ Với 2n+1=3 => n=1
+ Với 2n+1=-9 => n=-5
+ Với 2n+1=9 => n=4
Vậy với n=-5, -2, -1, 0, 1, 4 thì n+5 chia hết cho 2n+1
( 2n + 5 ) : n + 1
<=> 2n + 2 + 3 : n+ 1
2.( n+ 1) + 3 : n+ 1
mà 2 ( n+ 1 ) : n + 1
=> 3 : n+ 1
n + 1 thuộc ước (3 ) ={ +-1 ; + -3 }
vậy n { -4; -2 ; -0 ; 2 }
b, ( 3n+ 1 : n-1
<=> 3n -3 + 4 : n-1
3 .( n-1 ) +4 : n-1
mà 3 ( n-1 ) : n-1
=> 4 : n-1
( tương tự như trên nha )
c, n+ 5 : 2n + 1
<=> 2n + 10 : 2n + 1
( 2n + 1 ) + 9 : 2n + 1
mà 2n + 1 : 2n + 1
=> 9 : 2n + 1
( tương tự như trên)
Bài 1
Ta có :
(2n + 5) \(⋮\)(n + 1 ) => (2n + 2) + 3 \(⋮\)(n + 1)
=> 3 \(⋮\)(n + 1) => n + 1 \(\in\)Ư(3) => n + 1\(\in\){1 ; -1 ; 3 ; -3}
- Với n + 1 = 1 => n = 0
- Với n + 1 = -1 => n = -2
- Với n + 1 = 3 => n = 2
- Với n + 1 = -3 => n = -4
Bài 2
Ta có :
(3n + 1) \(⋮\)(n - 1) => (3n - 3) + 4 \(⋮\)(n - 1)
=> 4 \(⋮\)(n - 1) => n - 1 \(\in\)Ư(4) => n - 1 \(\in\) {1 ; -1 ; 2 ; -2 ; 4 ; -4}
- Với n - 1 = 1 => n = 2
- Với n - 1 = -1 => n = 0
- Với n - 1 = 2 => n = 3
- Với n - 1 = -2 => n = -1
- Với n - 1 = 4 => n = 5
- Với n - 1 = -4 => n = -3
Bài 3 thì mình bó tay