Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : 4n + 3 = 2(2n - 1) +5
Do 2n - 1 \(⋮\)2n - 1 nên 2(2n - 1) \(⋮\)2n - 1
Để 4n + 3 \(⋮\)2n - 1 thì 5 \(⋮\)2n - 1 => 2n - 1 \(\in\)Ư(5) = {1; 5}
Lập bảng :
2n - 1 | 1 | 5 |
n | 1 | 3 |
Vậy n = {5; 3} thì 4n + 3 chia hết cho 2n - 1
c) Ta có : n + 3 = (n - 1) + 4
Để (n - 1) + 4 \(⋮\)n - 1 thì 4 \(⋮\)n - 1 => n - 1 \(\in\)Ư(4) = {1; 2; 4}
Lập bảng :
n - 1 | 1 | 2 | 4 |
n | 2 | 3 | 5 |
Vậy n = {2; 3; 5} thì n + 3 \(⋮\)n - 1
a) \(6⋮\left(n-2\right)\Leftrightarrow\left(n-2\right)\inƯ\left(6\right)\)
Có \(Ư\left(6\right)=\left\{1;2;3;6\right\}\)
=>\(\left(n-2\right)\in\left\{1;2;3;6\right\}\)
Ta có bảng:
\(n-2\) | \(1\) | \(2\) | \(3\) | \(6\) |
\(n\) | \(3\) | \(4\) | \(5\) | \(8\) |
Vậy \(n\in\left\{3;4;5;8\right\}\)
b) \(\left(n+3\right)⋮\left(n-1\right)\Leftrightarrow\frac{n+3}{n-1}\)là số tự nhiên
Có:\(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=\frac{n-1}{n-1}+\frac{4}{n-1}=1+\frac{4}{n-1}\)
Vì 1 là số tự nhiên nên:
Để \(\frac{n+3}{n-1}\)là số tự nhiên thì \(\frac{4}{n-1}\)phải là số tự nhiên.
Để \(\frac{4}{n-1}\)là số tự nhiên thì: \(4⋮\left(n-1\right)\)
hay: \(\left(n-1\right)\inƯ\left(4\right)\)
Có \(Ư\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow\left(n-1\right)\in\left\{1;2;4\right\}\)
Ta có bảng:
\(n-1\) | \(1\) | \(2\) | \(4\) |
\(n\) | \(2\) | \(3\) | \(5\) |
Vậy \(n\in\left\{2;3;5\right\}\)
câu b và d bn tham khảo ở link này https://olm.vn/hoi-dap/detail/196836149523.html
câu a và câu c bn tham khảo ở link sau https://olm.vn/hoi-dap/detail/65130381377.html
a) \(\frac{4n+3}{2n+1}=\frac{4n+2+1}{2n+1}=2+\frac{1}{2n+1}\)
Để có phép chia hết thì \(1⋮2n+1\Leftrightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
b) \(\frac{3n-5}{4n+8}=\frac{3n+6-11}{4n+8}=\frac{3}{4}-\frac{11}{4n+8}\)
Để có phép chia hết thì \(11⋮4n+8\Leftrightarrow4n+8\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
c) \(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=1+\frac{4}{n-1}\)
Để có phép chia hết thì \(4⋮n-1\Leftrightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
d) \(\frac{3n+1}{11-n}=\frac{3n-33+34}{11-n}=-1+\frac{34}{11-n}\)
Để có phép chia hết thì \(34⋮11-n\Leftrightarrow11-n\inƯ\left(34\right)=\left\{\pm1;\pm2;\pm17;\pm34\right\}\)
Lập bảng xét giá trị cho từng trường hợp
Đễ nhưng quá nhiều không đủ kiên nhẫn để làm. Bạn đăng lần lượt thôi.
a, 4n + 3 ⋮ 2n - 1
4n - 2 + 5 ⋮ 2n - 1
2.(2n - 1) + 5 ⋮ 2n - 1
5 ⋮ 2n - 1
2n -1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) {-2; 0; 1; 3}
b, 3n - 5 ⋮ n + 1
3n + 3 - 8 ⋮ n + 1
3.(n + 1) - 8 ⋮ n + 1
8 ⋮ n + 1
n + 1 \(\in\) Ư(2) = {-8; -4; -2; -1; 1; 2; 4; 8}
n \(\in\) { -9; -5; -3; -2; 0; 1; 3; 7}