K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

\(tan\text{ }B\text{ }-3.tan\text{ }C=tan\text{ }60^o-3.tan\text{ }30^o=\sqrt{3}-3.\frac{1}{\sqrt{3}}=0\text{ }\text{ }\text{ }\text{ }\text{ }\)

21 tháng 11 2016

Từ A vẽ đường cao AH của tam giác ABC, từ M vẽ đường thẳng vuông góc với BC cắt AC tại N, Ta có các biểu thức sau: 
tgC=AH/CH=AH/(1/4(BC))=4AH/BC (1) 
tgB=MN/MB=MN/(1/2(BC))=2MN/BC. (2) 
tgB/tg C=(2MN/BC)/(4AH/BC)= MN/2AH (3) 
Theo định lý Talet thì MN/AH=2/3 do đó thay MN=2AH/3 vào biểu thức (3) ta có 
tgB/tgC=1/3

19 tháng 11 2016

giúp mình bài này vs

11 tháng 4 2022

*MO//BN (O thuộc AC).

\(\dfrac{AK}{AM}=\dfrac{1}{2}\Rightarrow\)K là trung điểm AM.

-△AMO có: K là trung điểm AM, KN//MO \(\Rightarrow\)N là trung điểm AO.

-△BNC có: MO//BN, M là trung điểm BC \(\Rightarrow\)O là trung điểm NC.

\(\Rightarrow AN=ON=OC=\dfrac{1}{3}AC\)

\(\dfrac{S_{AKN}}{S_{ABC}}=\dfrac{S_{AKN}}{S_{AMC}}.\dfrac{S_{AMC}}{S_{ABC}}=\dfrac{AN}{AC}.\dfrac{MC}{BC}=\dfrac{1}{3}.\dfrac{1}{2}=\dfrac{1}{6}\)

\(\Rightarrow S_{AKN}=\dfrac{S_{ABC}}{6}=\dfrac{60}{6}=10\left(cm^2\right)\)

NV
13 tháng 6 2021

\(tanB=tan15^0=2-\sqrt{3}\)

Cách tính cụ thể:

Trên tia AC lấy D sao cho \(\widehat{ABD}=30^0\Rightarrow BC\) là phân giác của \(\widehat{ABD}\)

Theo định lý phân giác: \(\dfrac{AC}{AB}=\dfrac{CD}{BD}=\dfrac{AC+CD}{AB+BD}=\dfrac{AD}{AB+BD}\) (1)

Lại có: \(tan\widehat{ABD}=tan30^0=\dfrac{AD}{AB}=\dfrac{1}{\sqrt{3}}\Rightarrow AB=\sqrt{3}AD\) (2)

\(sin\widehat{ABD}=sin30^0=\dfrac{AD}{BD}=\dfrac{1}{2}\Rightarrow BD=2AD\) (3)

Thế (2); (3) vào (1):

\(\dfrac{AC}{AB}=\dfrac{AD}{\sqrt{3}AD+2AD}=2-\sqrt{3}\)

\(\Rightarrow tanB=\dfrac{AC}{AB}=2-\sqrt{3}\)

NV
13 tháng 6 2021

undefined